387 DERIVATION OF PUTATIVE EMBRYONIC STEM CELLS FROM PORCINE PARTHENOGENETIC BLASTOCYSTS AND THE LOSS OF PARENTAL-SPECIFIC EXPRESSION PATTERNS IN Igf2/H19 GENES

2010 ◽  
Vol 22 (1) ◽  
pp. 350
Author(s):  
C. K. Lee ◽  
K. J. Uh ◽  
J. K. Park ◽  
H. S. Kim ◽  
H. M. Kim ◽  
...  

Porcine embryonic stem cells (ESC) can be a useful tool for the production of a transgenic animal and the study of developmental gene regulation. The study of porcine parthenogenetic ESC might also provide advantages in the understanding of changes in human parthenogenetic embryonic stem cells in the culture environment. Because human embryonic stem cells must be maintained stably for therapeutic uses, parthenogenetic porcine embryonic stem cells can give us precious information to help understand human parthenogenetic embryonic stem cells. Three putative porcine embryonic stem cell lines were derived from 99 parthenogenetic embryos. Cumulus-oocyte complexes were collected from prepubertal gilt ovaries and matured in vitro. Diploid parthenogenetic zygotes were produced by electrical activation followed by cytochalasin B treatment to suppress second polar body extrusion. Embryos were cultured to the blastocyst stage. Hatched blastocysts were directly cultured on mitomycin C-inactivated murine embryonic fibroblasts as feeder layers. Primary colonies were formed after 7 days of culture, and the colonies were transferred to new culture dishes 7 days after. They were passsaged every 5 days by physical dissociation, with one colony divided into small clumps and maintained for over 30 passages. These cells morphologically resembled human embryonic stem cells and consistently expressed the markers of pluripotent cells such as alkaline phosphatase, NANOG, OCT-4, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81. They could be maintained holding the previous characteristics after cryopreservation. Furthermore, we conducted experiments to confirm the expression patterns of the imprinted genes Igf2 and H19 in these ESC and IVF/parthenogenetic blastocysts using quantitative real-time PCR. At the blastocyst stage, the 2 genes were expressed in a parental-specific manner according to their origins in normal fertilized embryos and uniparental embryos. The putative parthenogenetic ESC, on the other hand, showed a high expression of Igf2, the paternally expressed gene, when compared with their blastocyst counterparts. Current work aims to confirm the authenticity of these ESC via teratoma formation in severe combined immunodeficiency mice following injection with these putative parthenogenetic ESC. This work was supported by the BioGreen 21 Program (#20070401034031, #20080401034031), Rural Development Administration, Republic of Korea (HK).

2017 ◽  
Vol 10 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Yeji Kim ◽  
Nury Kim ◽  
Sang-Wook Park ◽  
Hyemin Kim ◽  
Han-Jin Park ◽  
...  

Author(s):  
Eun-Young Shin ◽  
Seah Park ◽  
Won Yun Choi ◽  
Dong Ryul Lee

Abstract Background: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. Methods: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. Results: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. Conclusion: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.


2013 ◽  
Vol 14 (12) ◽  
pp. 4207-4216 ◽  
Author(s):  
Matthew Leung ◽  
Ashleigh Cooper ◽  
Soumen Jana ◽  
Ching-Ting Tsao ◽  
Timothy A. Petrie ◽  
...  

2010 ◽  
Vol 6 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Elaine Vo ◽  
Donny Hanjaya-Putra ◽  
Yuanting Zha ◽  
Sravanti Kusuma ◽  
Sharon Gerecht

Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


Sign in / Sign up

Export Citation Format

Share Document