70 INCORPORATING MULTIPLE STAGES OF MASS SPECTROMETRY INTO LIPID PROFILING OF OOCYTES AND PRE-IMPLANTATION EMBRYOS

2015 ◽  
Vol 27 (1) ◽  
pp. 128
Author(s):  
V. Pirro ◽  
A. K. Jarmusch ◽  
C. R. Ferreira ◽  
A. F. González-Serrano ◽  
J. E. Hallett ◽  
...  

Lipid profiling by mass spectrometry (MS) is increasingly used for the analysis of oocytes, embryos, and other reproductive cells. This analytical approach has several advantages, such as simple preparation (no need to perform extraction or separation), low detection limits (no need of sample pooling), and detection of structurally intact and diverse lipids. Many degrees of freedom are ensured by MS techniques (e.g. with the adoption of diverse ionization sources, mass analyzers, data acquisition systems), and this broadens the classes of lipids that can be detected and identified. Tandem or high-resolution MS experiments are normally performed for chemical characterisation. However, the use of novel approaches is a constant need to obtain deeper structural insights into lipids of biological interest, resulting in an information-rich dataset. Here we propose the use of multiple stages of MS for lipid profiling, specifically MS/MS data domain (i.e. ion mapping) experiments, so that comprehensive structural and relationship information (i.e. classes) can be extracted from a dataset. Indeed, the data generated have 2 dimensions of mass (i.e. precursor and product ions) and one of ion intensity, resulting in a datacube structure. Cutting through the datacube in different ways allows the extrapolation of (i) chemical composition of specific compounds (i.e. product scans) and (ii) pattern recognition for compounds that share identical neutral or charged fragments loss (i.e. neutral loss and precursor scans, respectively). The global chemical information enclosed into the datacube can be also processed by means of multiway statistical analyses to chemically characterise cells and cellular compartments. Preliminary data have been acquired, and the development of statistical tools for data processing is ongoing. Bovine and rat embryos were used for the experiments and analysed by extraction spray ambient MS. Experiments were performed with a Thermo Finnigan LTQ linear ion trap. Dimethylformamide-acetonitrile (1 : 1 v/v) was used as spray solvent. The ion mapping experiment was configured to scan ions of mass-to-charge (m/z) ratio 700 to 900 and perform MS/MS every m/z 1.5 window with a collision energy of 25 (arbitrary units). Fragments were detected in the m/z range of 150 to 900. Chemical differences are present between bovine and rat embryos, of note are palmitic, oleic, and stearic acids. The application of ion mapping to characterise species-specific and developmental dynamics regarding lipid composition is currently under investigation.

2004 ◽  
Vol 76 (13) ◽  
pp. 3590-3598 ◽  
Author(s):  
Melanie J. Schroeder ◽  
Jeffrey Shabanowitz ◽  
Jae C. Schwartz ◽  
Donald F. Hunt ◽  
Joshua J. Coon

2005 ◽  
Vol 11 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Julia Grabitzki ◽  
Volker Sauerland ◽  
Rudolf Geyer ◽  
Günter Lochnit

Phosphorylcholine (PC)-substituted biomolecules are wide-spread, highly relevant antigens of parasites, since this small hapten has been found to be a potent immunomodulatory component which allows the establishment of long lasting infections of the host. Structural data, especially of protein bound PC-substituents, are still rare due to the observation that mass spectrometric analyses are mostly hampered by this zwitterionic substituent resulting in low sensitivities and unusual but characteristic fragmentation patterns. Here, we investigated the fragmentation behavior of synthetic PC-substituted peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization ion-trap mass spectrometry. We could show that the predominant neutral loss of a trimethylamine unit (Hoffmann elimination) leads to cyclic phosphate derivatives which prevent further fragmentation of the peptide backbone by stabilizing the positive charge at this particular side chain. Knowledge of this PC-specific fragmentation might help to identify PC-substituted biomolecules and facilitate their structural analysis.


2003 ◽  
Vol 17 (17) ◽  
pp. 1941-1949 ◽  
Author(s):  
Fabian Kuhn ◽  
Michael Oehme ◽  
Fernando Romero ◽  
Eliane Abou-Mansour ◽  
Raffaele Tabacchi

1999 ◽  
Vol 82 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Robert S Sheridan ◽  
John R Meola

Abstract A method for detection, quantitation, and confirmation of more than 100 pesticides by gas chromatography (GC) with ion trap mass spectrometry (MS/MS) has been developed. The sensitivity of this method for many analytes is equal to or lower than those of selective GC detectors such as flame photometric detectors and electrolytic conductivity detectors. Using MS/MS, very low detection limits and good confirmation (1 precursor ion and 2 or more product ions) are achieved simultaneously. The entire list of pesticides is screened with 2 injections per sample. Samples are introduced onto the column by a temperature-programmed cold injection to maximize response. Each pesticide is run with its own unique set of parameters, which fragment the compound, retaining only the precursor ion. This ion is then refragmented to create a product spectrum. The selectivity of MS/MS gives a very clean spectrum, making compound identification and confirmation clear, even with a relatively dirty food matrix. If care is taken to maintain the injection port and guard column, this method can reliably identify and confirm more than 100 pesticides at the low parts-per-billion range.


2020 ◽  
Vol 103 (1) ◽  
pp. 78-82
Author(s):  
Niladri S Chatterjee ◽  
Akanksha Singh ◽  
K V Vishnu ◽  
K K Ajeeshkumar ◽  
R Anandan ◽  
...  

Abstract Background: Fish oils, which are rich in health-promoting polyunsaturated fatty acids (PUFA), have emerged as promising functional foods in the global health and wellness food market. Their source regarding the fish type, season, and location of harvesting might influence the nutritional value of such bioactive oils and determine their market price. The differences in price among such oils often lead to economically motivated mislabeling and adulteration. Objective: In this study, our objective was to demonstrate how a qualitative targeted shotgun lipid profile workflow using an electrospray ionization–quadrupole-linear ion trap MS (QTrap) could differentiate fish oils originating from two different species. Methods: Five samples each of sardine (Sardinella longiceps) oil and shark (Echinorhinus brucus) liver oil were diluted to a concentration of 80 µg/mL in chloroform–methanol (1 + 2, v/v) with 5 mM ammonium acetate. These samples were directly infused into a QTrap MS. The data were acquired for 23 precursor ion and 4 neutral loss scan experiments in the positive ionization mode and compared. Results: We identified the following major lipid classes: cholesteryl ester, diacyl glycerol, triacylglycerol, monoalkyldiacylglycerol, and phophatydyl choline. The relative peak areas of the identified lipid species, when subjected to supervised multivariate analysis, could effectively distinguish the sardine oil and shark liver oil. Conclusions: The approach will be useful in establishing authenticity of fish oil and to support the regulatory agencies in dispute resolution. It can also be extended to establish authenticity in other agricultural and food commodities. Highlights: This paper reports a proof of concept for authenticating PUFA-rich fish supplements. A shotgun targeted lipidomics profile and chemometrics modeling successfully discriminated sardine oil and shark liver oil.


Sign in / Sign up

Export Citation Format

Share Document