43 MASS VITRIFICATION OF GERMINAL-VESICLE STAGE EQUINE OOCYTES

2016 ◽  
Vol 28 (2) ◽  
pp. 151
Author(s):  
H. S. Canesin ◽  
I. Ortiz ◽  
J. G. Brom-de-Luna ◽  
Y. H. Choi ◽  
K. Hinrichs

Oocyte cryopreservation has the potential to preserve female genetics. In addition, equine oocytes are not readily available in some areas, and vitrification could be used to accumulate oocytes at remote locations to provide material for research. To preserve large numbers of oocytes, a method for rapid vitrification of multiple oocytes is needed. First, we determined whether immature equine oocytes could be held overnight before vitrification, and we tested the use of a mesh+capillary-action media-removal vitrification platform. Oocytes were collected via ultrasound-guided transvaginal follicle aspiration and randomly allotted to either immediate vitrification or overnight holding (24 to 27 h in 40% M199-Earle’s salts, 40% M199-Hanks’ salts, 20% fetal bovine serum, and 0.3 mM pyruvate) then vitrification. Oocytes were vitrified using different times (1 or 4 min) in vitrification solution and first warming solution: 1v1w, 1v4w, 4v1w, and 4v4w. The base solution was MH (80% M199-Hanks’ salts and 20% fetal bovine serum). Cryoprotectant concentration (vol/vol) was increased in 3 steps until reaching 7.5% dimethyl sulfoxide and 7.5% ethylene glycol. The oocytes were then held in vitrification solution (MH with 15% dimethyl sulfoxide, 15% ethylene glycol, and 0.5 M sucrose) for either 1 or 4 min, according to treatment, and 3 to 10 oocytes were transferred to a 75-μm sterile stainless steel mesh. The mesh was placed on sterile paper to absorb excess medium, then plunged in LN. The oocytes were warmed in MH solution with 1.25 M sucrose for either 1 or 4 min, then placed in 0.62 M and 0.31 M sucrose solutions for 5 min each and undetermined time in MH. After warming, oocytes were cultured for maturation (in vitro maturation) in M199-Earle’s salts, 5 mU mL–1 FSH, and 10% fetal bovine serum. After 30 to 36 h, the oocytes were denuded and stained with Hoechst 33258. Data were analysed by Fisher’s exact test. There were no significant differences (P > 0.05) in rates of meiotic resumption among timing treatments (35, 24, 26, and 39% for 1v1w, 1v4w, 4v1w, and 4v4w, respectively), nor between immediately vitrified (17/55, 31%) and overnight held-vitrified groups (18/56, 32%). In the second experiment, all oocytes were held overnight. They were vitrified and warmed using only the 1v1w and 4v4w schedules, then subjected to in vitro maturation, intracytoplasmic sperm injection, and embryo culture. The MII rate of the control group (27/37, 73%) was higher (P < 0.05) than that for 1v1w (12/33, 36%) or 4v4w treatments (10/35, 29%). The cleavage rate for control (25/27, 93%) was higher than that for 1v1w (5/9, 56%) but not than that for 4v4w (6/9, 67%). Blastocyst rates were 19% (5/27), 11% (1/9), and 0% (0/9) for control, 1v1w, and 4v4w, respectively (P > 0.05). These results indicate that blastocysts may be produced from equine immature oocytes vitrified en masse; however, both the maturation and blastocyst production rates were relatively low. Additional studies are required to improve the efficiency of this technique. This work was supported by the Clinical Equine ICSI Program, Texas A&M University.

2019 ◽  
Vol 31 (1) ◽  
pp. 140
Author(s):  
F. Salerno ◽  
M. Rubessa ◽  
B. Gasparrini ◽  
M. Wheeler

It is known that cryopreservation triggers spindle disassembly, increased aneuploidy risk, decreased post-thaw survival, fertilization, and embryo development. We hypothesised that a treatment with D2O before vitrification would slow down oocyte metabolism and reduce ice crystal formation by replacing water inside the cells. The aim of the study was to evaluate the effect of a 4-h treatment with different D2O concentrations (0, 3, 15, and 30%) on cryotolerance of bovine in vitro-matured oocytes. Abattoir-derived bovine oocytes were matured in vitro for 20h in TCM-199 medium with 15% of bovine serum (BS), 0.5µg mL−1 of FSH, 5µg mL−1 of LH, 0.8mM l-glutamine, and 50µg mL−1 of gentamicin at 39°C with 5% of CO2 and randomly divided into 5 experimental groups. A group of non-vitrified oocytes was used as the fresh oocyte control group, whereas the remaining oocytes were incubated for 4h in in vitro maturation medium with 0% (vitrified control; n=205), 3% (n=205), 15% (n=205), and 30% D2O (n=205) before vitrification. The experiment was repeated 4 times. Oocytes were denuded in HEPES-buffered TCM-199 (H199)+5% BS and vitrified using a cryotop freezing straw. The oocytes were incubated in 200μL of H199+20% BS with 7.5% ethylene glycol and 7.5% dimethyl sulfoxide for 3min. After that, oocytes were collected in 50μL of H199+20% fetal bovine serum with 15% ethylene glycol+15% dimethyl sulfoxide and 0.5M sucrose for 20s and plunged into LN2. One month later, oocytes were warmed in thawing media with decreasing concentrations of sucrose (1.35M to 0.31M) and then placed into in vitro maturation medium for 2h before IVF. Matured oocytes were IVF and cultured according to standard procedures (Rubessa et al. 2011 Theriogenology 76, 1347-1355). Cleavage and blastocyst rates were evaluated after 7 days of culture. Data were analysed using the GLM procedure of SPSS (SPSS Inc., Chicago, IL, USA). The least statistical difference post-hoc test was used to perform statistical multiple comparison. The α-level was set at 0.05. As expected, both cleavage [60.5±4.6 (fresh control); 36.9±2.6 (0% D2O); 46.3±3.7 (3% D2O); 31.6±2.4 (15% D2O); and 24.4±2.6 (30% D2O)] and blastocyst rates [25.7±0.8 (fresh control); 9.0±0.8 (0% D2O); 9.0±0.7 (3% D2O); 3.6±0.2 (15% D2O); and 4.3±0.8 (30% D2O)] decreased in all vitrified groups compared with the fresh control group. Within vitrified oocytes, cleavage rate increased (P&lt;0.05) with 3% D2O treatment compared with the other groups. However, pretreatment with higher (15-30%) D2O concentrations decreased (P&lt;0.05) blastocyst rates of vitrified-warmed oocytes. In conclusion, a pretreatment with low concentrations (3%) of D2O improved the cleavage rate of bovine vitrified-warmed oocytes, suggesting a potential beneficial effect, whereas deleterious effects were observed using the higher concentrations. Therefore, further studies are required to assess a potential use of D2O to improve oocyte cryotolerance, likely testing different incubation times.


2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
M. M. Souza ◽  
N. Z. Saraiva ◽  
C. S. Oliveira ◽  
T. A. D. Tetzner-Nanzeri ◽  
R. Vantini ◽  
...  

The use of fetal bovine serum (FBS) as protein supplementation in IVP of bovine embryos has presented difficulties because it can introduce a number of pathogenic components in culture systems, can be related to the birth of calf with abnormal growth and development, and precludes the establishment of the actual nutritional needs of the embryo, because it contains an unlimited variety of substances. This study evaluated the replacement of the FBS in the medium of in vitro culture (IVC) of bovine embryos, using the knockout serum replacer (KSR) as protein supplementation and culture medium conditioned with stem cells. Therefore, bovine oocytes from ovaries of slaughterhouse were selected and matured in vitro in TCM-199 medium supplemented with 10% FBS (Crypion), 1.0 μg mL-1 FSH (Pluset®, Calier, Barcelona, Spain), 50 μg mL-1 hCG (Profasi®, Serono, Geneva, Switzerland), 1.0 μg mL-1 estradiol (Sigma E-2758, Sigma Chemical, St. Louis, MO, USA), 0.2 mM sodium pyruvate, and 83.4 μg mL-1 amikacin for 24 h. After that, 1144 oocytes were fertilized in IVF-TALP medium containing 6 mg mL-1 of BSA. After 18 to 22 h, the zygotes were cultured in SOF + 5% FBS (group 2); SOF + 5% KSR (group 3); SOF (5% FBS) + 10% SOF (5% FBS) conditioned by stem cells (group 4); or SOF (5% KSR) + 10% SOF (5% KSR) conditioned by stem cells (group 5), in an atmosphere of 5% O2 at 38.5°C for 8 days. A control group outside the controlled atmosphere was added, supplemented with 5% FBS (group 1). The SOF medium supplemented with 5% FBS or KSR was conditioned by stem cells and added to SOF medium for the culture of embryo at a concentration of 10%. The rates of cleavage and production of blastocysts were assessed 48 hours and 7 days after IVF, respectively, and analyzed by chi-square test, with a significance level of 5% in the statistical program Minitab® (release 14.1, Minitab, State College, PA, USA). On the eighth day, the TUNEL test for determination of the percentage of apoptosis and the differential staining technique for determination of inner cell mass (ICM) and trophoblast (TF) were performed. The results were submitted to ANOVA, followed by comparing the means by Tukey’s test using the program GraphPad Prism (GraphPad, San Diego, CA, USA). The treatments did not differ in the production of embryos, being similar to the control group: G1 = 31.75% (74/233), G2 = 35.26% (79/224), G3 = 32.70% (74/226), G4 = 28.76% (63/219), and G5 = 26.85% (65/242). With regard to the assessment of embryonic quality, the treatments showed similar results to the control groups. No differences were observed among groups both in color and ICM/TF ratio (G1 = 0.60, G2 = 0.62, G3 =0.65, G4 = 0.60, and G5 = 0.60). Furthermore, the TUNEL showed no significant difference in the percentage of apoptosis among groups (G1 = 7.10%, G2 = 3.76%, G3 = 5.58%, G4 = 4.50%, and G5 = 4.11%). The data obtained so far indicate that it is possible to produce embryos in vitro by replacing the FBS in the culture, achieving results similar to those obtained with serum. Financial support: FAPESP 2007/58506-6.


2020 ◽  
Vol 8 (5) ◽  
pp. 2187-2191
Author(s):  
Dipannita Baishya ◽  
Arundhati Bora ◽  
J Goswami ◽  
Aunbha Baruah ◽  
DJ Dutta ◽  
...  

SAINSTIS ◽  
2012 ◽  
Author(s):  
Kholifah Holil, Eva Ari Wahyuni, Hari Soepriandono Gatot Ciptadi

Parthenogenetic activation is one method that can be used to determine the quality of IVM oocytes results before further use to other reproductive technologies (IVF and transfer core). In parthenogenetic activation can be used various activators such as ethanol, Ca Ionophore, and Crude Sperm Extract (CSE). Therefore, the aim of this experiment is to know the response use a variety of materials activator of parthenogenetic activation of goat oocytes IVM.<br />The sample used in this experiment was oocytes aspirated from goat ovarian follicles taken from RPH Sukun of Malang. Oocytes were matured for 24 hr in TCM-199 supplemented with fetal bovine serum (FBS), follicle-stimulating hormone (FSH) and lutheinizing hormone (LH) at a temperature of 38,5oC and 5% CO2 in humidified air. After another 30 hours of in vitro maturation, they were then activated by various treatments. The treatment of experiment are treatment 1, activation using ethanol 7% for 7 minute, treament 2, activation using Ca Ionophore 20 µM for 7 minute. Treatment 3, activation using CSE 2,5 µg/ml for 2 hr.<br />Based on the result of research, it is showed that activation by using 7% ethanol for 7 minutes is able to produce cleavage rate of 70.40%. Activation by Ca Ionophore 20 μM for 7 minutes is able to produce cleavage rate of 52.75%. While the use of CSE activation with 2.5 ug / ml for 2 hours produces cleavage rate of 36.33%. Thus it can be concluded that the goat oocyte IVM able to respond to a variety of materials activators on parthenogenetic activation performed. The highest response given by the successive results goat IVM oocytes activated using 7% ethanol for 7 minutes, 20 μM Ca Ionophore for 7 minutes, and the CSE 2.5 microg / ml for 2 hours.<br /><br />Keywords: Parthenogenetic activation, goat oocytes IVM, etanol, calsium ionophore, Crude Sperm Extract (CSE). <br /><br />


2012 ◽  
Vol 24 (1) ◽  
pp. 204
Author(s):  
Y. P. Yin ◽  
L. N. Tang ◽  
A. R. Fan ◽  
S. Zhang ◽  
X. Ma ◽  
...  

Parthenogenetic activation of the oocyte represents an important step in the somatic cell nuclear transfer. The aim of the present study was to establish optimizing conditions for parthenogenetic activation of Sika deer oocytes necessary for cloning Sika deer. Sika deer ovaries were collected from a slaughter house during oestrus season (October and November), placed into saline (25°C) supplemented with 1% (v/v) penicillin and streptomycin and transported into the laboratory within 4 h. The small vesicular follicles (diameter, 2–5 mm) on the ovarian surface were incised with a scalpel in a Petri dish containing PBS to release the cumulus–oocyte complexes (COC). Only COC with uniform cytoplasm and at least 3 layers of compact cumulus cells were cultured in vitro for 24 h. The media of in vitro maturation (IVM) was TCM-199 supplemented with 10% fetal bovine serum, 10 μg mL–1 FSH, 1 μg mL–1 LH, 0.2 mM cysteamine and 50 ng mL–1 epidermal growth factor. After IVM, the cumulus cells were denuded with 0.2% hyaluronidase in TCM-199 at 38.5°C by pipetting. The cumulus-free Sika deer oocytes were stimulated by 1 of the following treatments: 1) ethanol + 6-DMAP, treated with 7% ethanol for 7 min and 2 mM 6-dimethylaminopurine (6-DMAP) in DSOF for 4 h; or 2) ionomycin + 6-DMAP, treated with 5 μM ionomycin for 5 min and 2 mM 6-DMAP in DSOF for 4 h. Then, oocytes were transferred into culture media for 7 days [Day 0 (D0) = activation]. On D3, embryos were transferred into fresh DSOF drops supplemented with 10% (v/v) fetal bovine serum. All cultures were overlaid with mineral oil and kept in a humidified modular incubation chamber gassed with 5% CO2. Effects of these chemicals on oocyte activation were then examined and compared with the controls, in which oocytes were cultured in TCM-199 for 4 h without chemical supplement. Our results showed that rates of cleavage, morula and blastocyst were 72.7, 43.9 and 32.4% (n = 139), respectively, by treatment with ionomycin + 6-DMAP. And rates of cleavage, morula and blastocyst were 61.1, 29.7 and 17.8% (n = 134), respectively, by treatment with ethanol + 6-DMAP. However, the rates of cleavage, morula and blastocyst were 5, 0 and 0% (n = 101) in the control group. Meanwhile, the rates of oocyte cleavage (72.7% vs 61.1%), morula (43.9% vs 29.7%) and blastocyst (32.4% vs 17.8%) between 2 treatments of ionomycin + 6-DMAP and ethanol + 6-DMAP were significantly different (P < 0.05). In conclusion, parthenogenetic activation of Sika deer oocytes with ionomycin + 6-DMAP is more effective than that with ethanol + 6-DMAP. These results have begun to elucidate parameters important for animal modeling and cloning with the Sika deer and should facilitate the development of genetically defined animal models in this species. This work was supported by the grant from the China Postdoctoral Science Foundation (No. 20090451135).


2017 ◽  
Vol 29 (1) ◽  
pp. 127 ◽  
Author(s):  
R. Appeltant ◽  
T. Somfai ◽  
E. C. S. Santos ◽  
K. Kikuchi

Although offspring have been produced from porcine cumulus-oocyte complexes (COC) vitrified at the immature stage (Somfai et al. 2014 PLoS One 9, e97731), embryo development rates have remained low. Numerous vitrification protocols are reported with a wide variation in the applied exposure time to the vitrification solution. Because cryoprotectants in the vitrification solution can be detrimental to the oocytes and their subsequent development, it is important to verify the effect of their exposure time to the COC. In this study, we compared the development of a control group with 3 toxicity control (TC) groups in which COC were exposed to the vitrification solution for 30 s, 1 min, or 1.5 min (TC1, TC2, and TC3, respectively) at 38.5°C. Before exposure, the COC were rinsed and equilibrated in 7 µg mL−1 cytochalasin B. The equilibration solution consisted of 2% (vol/vol) ethylene glycol + 2% (vol/vol) propylene glycol and the vitrification solution contained 17.5% (vol/vol) ethylene glycol + 17.5% (vol/vol) propylene glycol, 50 mg mL−1 polyvinylpyrrolidone and 0.3 M sucrose. The COC were not exposed to liquid nitrogen. After washing in a warming solution of 0.4 M sucrose at 42°C, COC were washed in a sucrose gradient from 0.2 to 0.0 M. Subsequently, the COC were subjected to in vitro maturation in porcine oocyte medium. During the first 20 h of in vitro maturation, the porcine oocyte medium was supplemented with 10 IU mL−1 eCG, 10 IU mL−1 hCG, 1 mM dibutyryl cAMP, and 10 ng mL−1 epidermal growth factor. Then, the medium was replaced with dibutyryl cAMP-free porcine oocyte medium for an additional 28 h. After in vitro maturation, oocytes were parthenogenetically activated (Day 0) and cultured for 7 days in porcine zygote medium. Survival, nuclear maturation, cleavage, and blastocysts rates (Days 6 and 7) were assessed. All parameters were statistically analysed by binary logistic regression. Only the survival rate of TC3 was significantly lower than that of the control group (89.2 v. 95.6%). Exposure to cryoprotectants significantly decreased maturation rates in TC1, TC2, and TC3 compared with the control (72.6%, 75.2%, 76.3% v. 86.1%). Cleavage rates were significantly lower in TC2 and TC3 than that in the control (82.8% and 81.7% v. 92.9%). Concerning blastocyst rates on Day 6 and Day 7 of in vitro culture, only TC1 could reach the same level as the control, expressed on the total number of activated oocytes (54.6% v. 67.7%, and 64.0% v. 72.9%, respectively) as well as expressed on the cleaved oocytes (61.4% v. 72.4% and 72.0% v. 78.0%, respectively). Consequently, despite the reduced maturation rate, TC1 provides the same quantity of blastocysts from matured oocytes as the control. In conclusion, exposure to the vitrification solution for longer than 30 s has toxic effects on COC and therefore is not recommended for vitrification. R. Appeltant is an International Research Fellow of the JSPS Japan (P15402).


1995 ◽  
Vol 7 (1) ◽  
pp. 113 ◽  
Author(s):  
S Hochi ◽  
T Fujimoto ◽  
N Oguri

Viability following vitrification of equine blastocysts with different sizes was investigated in vitro. Twenty-four blastocysts were classified into three groups according to their diameters (< 200 microns, 200-300 microns and > 300 microns; n = 8 each). The solution used for vitrification was defined as EFS and contained 40% ethylene glycol, 18% Ficoll and 0.3 M sucrose in modified-phosphate-buffered saline (m-PBS). During pretreatment with 20% ethylene glycol in m-PBS for 20 min, the larger blastocysts responded to the osmotic pressure caused by 20% ethylene glycol more slowly than the smaller blastocysts. Single blastocysts were loaded into the EFS in 0.25-mL straws, left to stand for 1 min and vitrified in nitrogen vapour. After thawing for 20 s in water (20 degrees C), a fractured zona pellucida or capsule was seen in: 1 of 8 blastocysts < 200 microns in diameter; 1 of 8 blastocysts 200-300 microns in diameter; and 2 of 8 blastocysts > 300 microns in diameter. When the blastocysts were cultured for 48 h in TCM199 supplemented with 10% fetal bovine serum at 37 degrees C in 5% CO2 in air, 7 of 8 (88%) blastocysts < 200 microns in diameter and 6 of 8 (75%) blastocysts 200-300 microns in diameter developed with re-expansion of the blastocoele. However, the developmental ability of blastocysts > 300 microns in diameter (2 of 8, 25%) was significantly lower than that of blastocysts < 200 microns in diameter (P < 0.05).


1996 ◽  
Vol 45 (1) ◽  
pp. 245 ◽  
Author(s):  
S.K. Das ◽  
M.S. Chauhan ◽  
P. Palta ◽  
P.K. Katiyar ◽  
M.L. Madan

2016 ◽  
Vol 28 (11) ◽  
pp. 1721 ◽  
Author(s):  
Maite del Collado ◽  
Naiara Z. Saraiva ◽  
Flavia L. Lopes ◽  
Roberta C. Gaspar ◽  
Luciana C. Padilha ◽  
...  

Proper oocyte maturation is crucial for subsequent embryo development; however, oocyte mitochondrial and lipid-droplet behaviour are still poorly understood. Although excessive lipid accumulation during in vitro production (IVP) of bovine embryos has been linked with impaired cryotolerance, lipid oxidation is essential for adequate energy supply. Fetal bovine serum (FBS) and bovine serum albumin (BSA) are supplements used during IVP, containing high and low lipid content, respectively. This study aimed to understand how these supplements influence oocyte mitochondrial and lipid behaviour during in vitro maturation (IVM) in comparison to in vivo maturation, as well as their influence on development rates and embryo lipid accumulation during IVP. We demonstrate that only in vivo-matured oocytes maintained correlation between lipid content and active mitochondria. IVM media containing FBS increased total lipid content 18-fold and resulted in higher lipid accumulation in oocytes when compared with media with BSA. IVM using a lower FBS concentration combined with BSA resulted in satisfactory maturation and embryo development and also reduced lipid accumulation in blastocysts. In conclusion, IVM causes changes in mitochondrial and lipid dynamics, which may have negative effects on oocyte development rates and embryo lipid accumulation. Moreover, decreasing FBS concentrations during IVM may reduce embryo lipid accumulation without affecting production rates.


2018 ◽  
Vol 30 (1) ◽  
pp. 176
Author(s):  
M. M. R. Chowdhury ◽  
I. Khan ◽  
A. Mesalam ◽  
K.-L. Lee ◽  
J.-Y. Hwang ◽  
...  

In vitro embryo developmental potentials are still suboptimal compared with in vivo potential due to the challenge of various unknown stressors that must be overcome by in vitro-cultured oocytes. To improve existing embryo developmental potentials, many chemicals have been treated in maturation media by dissolving in toxic substances such as dimethyl sulfoxide (DMSO) or other carrier molecule. The foremost effort of this study was to investigate the impact of the solvent tetrahydrofuran (THF) on the cytotoxicity of in vitro embryo production (IVP). The experiment was completed within 8 replicates. Statistical analyses were performed using SPSS version 22.0 (IBM/SPSS, Armonk, NY, USA), a one-way ANOVA followed by multiple pairwise comparisons (Tukey’s test), and Duncan’s multiple range post hoc test. The level of statistical significance was considered P < 0.05. Oocytes were cultured in vitro maturation media (IVM) followed by in vitro fertilization (IVF), in vitro culture media 1 (IVC1), and in vitro culture media 2 (IVC2). Composition of the media was as follows: IVM medium was TCM-199 supplemented with 10% (v/v) fetal bovine serum, 1 µg mL−1 oestradiol-17β, 10 µg mL−1 FSH, 0.6 mM cysteine, and 0.2 mM sodium pyruvate. The IVC1 medium consisted of CR1-aa supplemented with 44 µg mL−1 sodium pyruvate, 14.6 µg mL−1 glutamine, 10 IU mL−1 penicillin, 0.1 mg mL−1 streptomycin, 3 mg mL−1 BSA, and 310 µg mL−1 glutathione. The IVC2 medium was the same composition as IVC1 except that BSA was replaced with 10% (v/v) fetal bovine serum. The final concentration of the optimized (0.5 µM) THF in culture medium was 0.4%. When coculturing with 0.5 µM THF in the IVM stage, the cleavage rate (58.65 ± 1.90% v. 56.87 ± 1.68%) was not significantly different, but the blastocyst rate (35.21 ± 1.44% v. 28.34 ± 2.11%) was significantly higher compared with the control group. The TUNEL assay confirmed that apoptotic nuclei in THF group were significantly reduced compared with the control group (2.32 ± 0.14 v. 5.65 ± 0.12). The total cell number of trophectoderm (TE) in control and THF groups was 115.34 ± 0.98 and 132.13 ± 1.55, and that of the inner cell mass (ICM) was 29.67 ± 0.40 and 39.94 ± 0.44, respectively. However, the ICM:TE ratio in control and treated blastocysts was 1:3.34 and 1:3.9, which was not statistically significant. Immunocytochemistry analysis (using antibodies to IKBKB, NFkB, COX2, CASP9, and CASP3) demonstrated that THF supplementation significantly attenuated expression of these proteins. The quantitative recerse transcription PCR data established that relative mRNA expression level of the anti-apoptotic gene BCL2 was up-regulated, whereas that of COX2, iNOS, BAX, IKBKB, NFkB, CASP9, and CASP3 were significantly down-regulated in the THF treated group compared with the control. In conclusion, 0.5 µM THF supplement in the IVM media did not have injurious effects on in vitro-cultured bovine embryos. This work was supported by grant from the Next-Generation BiogGeen21 (No. PJ01107703), IPET (No. 315017-5 and 117029-3), Allergy free cat (Co.. Felix Pets) and BK21plus.


Sign in / Sign up

Export Citation Format

Share Document