Field calibration of ThetaProbe (ML2x) and ECHO probe (EC-20) soil water sensors in a Black Vertosol

Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 233 ◽  
Author(s):  
J. L. Foley ◽  
E. Harris

Past studies have shown that soil-specific calibrations are required to attain a higher level of accuracy when measuring soil water content with ThetaProbe and ECHO probe soil water sensors, particularly in swelling clay soils. Both probes were assessed for their capacity to accurately monitor soil water in a deep drainage study on a Black Vertosol. Probes were trialled in situ and calibrated against hand-sampled volumetric measurements. The generic calibrations given by the manufacturers resulted in significant errors in water content estimates for both probes. Using the generic calibration, ECHO probes under-estimated water content by 0.10–0.2 m3/m3, whereas ThetaProbes under-estimated by 0.04 m3/m3 at the wet end and over-estimated by 0.08 m3/m3 at the dry end. The soil-specific calibrations significantly improved the accuracy of both probes. ThetaProbes were chosen for the drainage study. The calibration allowed for accuracy across the full wet–dry range to within 0.001–0.004 m3/m3 of volumetric measurements. ECHO probes were less accurate at the wet end, but still determined soil water content to within 0.02–0.05 m3/m3 of volumetric measurements.

Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 825 ◽  
Author(s):  
BJ Bridge ◽  
J Sabburg ◽  
KO Habash ◽  
JAR Ball ◽  
NH Hancock

The dielectric behaviour of 3 soils, a sandy loam (Red Chromosol), a highly structured non-swelling clay (Red Ferrosol), and a self-mulching swelling clay (Black Vertosol), was investigated using a waveguide and network analyser technique in the frequency range 3.0 GHz to 4.5 GHz. Curves relating the real part of the relative permittivity to water content are presented and compared with the general Topp curve. The Chromosol generally followed the Topp curve, but the Ferrosol and Vertosol both had curves below the Topp curve. The Ferrosol showed a maximum horizontal offset of 0.05 m3/m3 from the Topp curve in the mid soil-water content range of 0.2–0.3 m3/m3 offset from the Topp curve of 0.10 m3/m3, with a maximum of 0.12 m3/m3 occurring at a soil water content of 0.4 m3/m3. Similar dielectric curves were obtained for the Chromosol and Vertosol using time domain reflectometry (TDR). With this method, the Chromosol showed very close agreement with the Topp curve, but the Vertosol again gave a curve below the Topp curve, similar to the one obtained using the waveguide and network analyser, but with a smaller maximum horizontal offset of 0.08 m3/m3. The difference between the waveguide and TDR Vertosol curves was mainly attributed to low bulk densities in the waveguide where packing was difficult. Some was also attributed to the wider spectrum of frequencies used by TDR. Use of the Topp curve for TDR measurements in the Vertosol would underestimate its water content by at least 0.06 m3/m3. These results are in good agreement with others obtained from similar soils. Deviations from the Topp curve are attributed to bound water associated with the clay particles and this depends on clay mineralogy and clay content. The presented calibration curves improve the accuracy of TDR measurements in these types of clay soils. A field comparison between water contents measured by TDR and gravimetric sampling in a similar Black Vertosol is presented. This calibration showed that soil water contents can be severely overestimated by using TDR with long probes and cables. This unexpected and opposite result is discussed in terms of attenuated high frequencies in the 15-m-long connecting cable used, errors in depth of probe placement, and changes in bulk density and DC conductivity.


2018 ◽  
Vol 69 (6) ◽  
pp. 1030-1034 ◽  
Author(s):  
M. M. Wen ◽  
G. Liu ◽  
R. Horton ◽  
K. Noborio

Author(s):  
Luca Piciullo ◽  
Graham Gilbert

<p>In the last decades, rainfall thresholds for landslide occurrences were thoroughly investigated, producing several different test cases and relevant technical and scientific advances. However, a recent literature review on rainfall thresholds articles (Segoni et al., 2018), published in journals indexed in SCOPUS or ISI Web of knowledge databases in the period 2008-2016, highlighted significant advances and critical issues about this topic. Only in the 11% of the analysed papers (a total of 115) there were installed instruments for measuring physical parameters other than rainfall. The implication was that, in most cases, the occurrence of landslides was forecasted considering exclusively a rainfall correlation, completely neglecting soil characteristics.</p><p>A reanalysis dataset (ERA5-Land) providing a consistent view of the evolution of land variables over several decades at an enhanced resolution has been used to evaluate the soil water content. Reanalysis combines numerical model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. A comparison between in situ measurements with the results of the model has been carried out for two sites in Norway (Eidsvoll, Morsa catchmen) with 3 different vegetation types: grass, bush, tree. The results showed a good agreement between the modelled soil water content layer 2 and 3 (respectively representing 2 - 28 cm and 28 -100 cm depths) and, respectively, in-situ measurements at 30 and 50 cm depths.</p><p>Then, 15 Norwegian basins with moraine and peat covers and, previous landslide occurrences in the period 2009-2018, have been selected for correlations. Combinations of rainfall and soil water contents that triggered and not-triggered landslides have been analysed. Rainfall-soil water content thresholds have been defined for the selected basins highlighting the important role played by soil water content, together with rainfall, in triggering landslides. The use of the soil water content contributed to increase the performance of the thresholds and to reduce the uncertainties of landslide forecast.</p><p>This paper has been conceived in the context of the project "Klima 2050-Risk reduction through climate adaptation of buildings and infrastructure" http://www.klima2050.no/, and it is included into Work Package 3.3-Early warning systems.</p><p> </p>


Soil Research ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 289 ◽  
Author(s):  
Dieter Geesing ◽  
Martin Bachmaier ◽  
Urs Schmidhalter

Soil water research requires methods to perform accurate measurements. A capacitance probe gauge has characteristics that seem to make it an attractive replacement for neutron scatter gauges to measure soil water content, but there is evidence that capacitance systems should be calibrated for individual soils. Laboratory calibrations and many field calibration methods are costly and time-consuming, and controlled conditions and disturbed soil samples do not always reflect field conditions, and thus, they are inadequate for practical use. The objectives of the present study were (i) to test a simple field calibration method for a recently developed capacitive sensor even under highly variable soil texture conditions, and (ii) to validate this approach under various soil moisture conditions. Soil samples were taken 0.5 m from the access tube of the sensor and a whole field calibration and several site-specific calibrations were developed using 10–142 observations per site under different soil water regimes. A regression of soil water content estimated by sensor reading on water content obtained by core sampling showed no significant difference in the slope and intercept of the 1:1 line when the field calibration was applied. However, the precision of the calibration was only considerably increased if the estimations were based on site-specific calibrations developed on at least 35 observations per site. The precision and accuracy of the calibration equations were not affected when data were obtained only under wet or dry soil conditions. The method presented in this paper is a speedy and cheap way to calibrate capacitance probe sensors.


2013 ◽  
Vol 52 (10) ◽  
pp. 2312-2327 ◽  
Author(s):  
Peter Greve ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer

AbstractSoil water content (SWC) depends on and affects the energy flux partitioning at the land–atmosphere interface. Above all, the latent heat flux is limited by the SWC of the root zone on one hand and radiation on the other. Therefore, SWC is a key variable in the climate system. In this study, the performance of the Weather Research and Forecasting model coupled with the Noah land surface model (WRF-Noah) system in a climate hindcast simulation from 1990 to 2008 is evaluated with respect to SWC versus two reanalysis datasets for Europe during 2007 and 2008 with in situ soil moisture observations from southern France. When compared with the in situ observations, WRF-Noah generally reproduces the SWC annual cycle while the reanalysis SWCs do not. The biases in areal mean WRF-Noah SWCs relate to biases in precipitation and evapotranspiration in a cropland environment. The spatial patterns and temporal variability of the seasonal mean SWCs from the WRF-Noah simulations and from the two reanalyses correspond well, while absolute values differ significantly, especially at the regional scale.


2021 ◽  
Vol 294 ◽  
pp. 106373
Author(s):  
Meng-Ya Sun ◽  
Bin Shi ◽  
Cheng-Cheng Zhang ◽  
Xing Zheng ◽  
Jun-Yi Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document