Physical characteristics of sands amended with fly ash

Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 147 ◽  
Author(s):  
DJ Campbell ◽  
WE Fox ◽  
RL Aitken ◽  
LC Bell

Fly ash from a coal-fired power station was incorporated with each of a 'fine' (0.2-0.5 mm) and 'coarse' (1.4-2.0 mm) sand fraction to give mixtures containing 0, 10, 20, 30, 40, 50, 75 and 100% fly ash by weight. The addition of 10% by weight of ash increased the available water capacity by factors of 7.2 (1.0-7.2% by weight) and 13.5 (0.4-5.4% by weight) for the 'fine' and 'coarse' sands respectively. Subsequent additional 10% increments of ash increased the capacity by smaller amounts. The saturated hydraulic conductivity of the sands decreased markedly with ash addition. The changes in available water capacity and hydraulic conductivity were associated with an increase in capillary pores at the expense of non-capillary pores. Addition of fly ash to both sand fractions resulted in a bilinear relationship between void ratio (volume voids/volume solids) and fly ash percentage in the mixes which was closely related to that theoretically predicted for binary mixtures. The measured void ratios of the mixes exhibited minimum values at 36% and 20% ash by volume for the 'fine' and 'coarse' sand mixes respectively, which compared with the theoretical void ratios for these mixes of 27% and 23% respectively.

Soil Research ◽  
1991 ◽  
Vol 29 (5) ◽  
pp. 587 ◽  
Author(s):  
NJ Mckenzie ◽  
KRJ Smettem ◽  
AJ Ringrose-Voase

The accurate characterization of soil water and air properties is difficult in soil survey because of logistic constraints. Less reliable surrogates are commonly used to estimate these properties. The surrogates provide a method for moving from measures that tend to be static and semi-empirical to those characterizing soil processes. The utility of four schemes for predicting air-filled porosity, available water capacity and saturated hydraulic conductivity on the basis of field-determined soil morphology has been assessed using data from a limited number of profiles with features commonly encountered in Australia. None of the systems provided statistically significant predictions of available water capacity and the results for air-filled porosity were moderate (McKeague et al. (1986), r2 = 0.58; Hall et al. (19771, r2 = 0 -64; Williams et al. (1991), r2 = 0.70). Encouragingly, the Hollis and Woods (1989) system generated good predictions of field-saturated hydraulic conductivity (r2 = 0.77). It is concluded that better measurement methods and programs of data collection are needed for both the properties used as surrogates (e.g. morphology) and those for which predictions are required (e.g. air and water properties).


2021 ◽  
Vol 67 (No. 3) ◽  
pp. 108-115
Author(s):  
Tanko Bako ◽  
Ezekiel Ambo Mamai ◽  
Istifanus Akila Bardey

Based on the hypothesis that soil properties and productivity components should be affected by different tillage methods, field and laboratory experiments were conducted to study the effects of zero tillage (ZT), one pass of disc plough tillage (P), one pass of disc plough plus one pass of disc harrow tillage (PH) and one pass of disc plough plus two passes of disc harrow tillage (PHH) on the distribution of the bulk density, available water capacity, pH, organic matter, available phosphorus, iron oxide and aluminium oxide at different soil depths, and their effects on the soil productivity. The available water capacity, pH, organic matter and available phosphorus were found to increase with the degree of tillage, while the bulk density, iron oxide and aluminium oxide were found to decrease with the degree of tillage. The results show that the soil productivity index was significantly (P ≤ 0.05) affected by the tillage methods and found to increase with the degree of tillage.


2021 ◽  
Vol 8 (3) ◽  
pp. 2791-2799
Author(s):  
Atiqah Aulia Hanuf ◽  
Sugeng Prijono ◽  
S Soemarno

Coffee plantation management has an important role in soil quality in order to increase coffee production. Biopore Infiltration Hole with Compost (BIHC) can increase soil available water capacity. In this study, the goal was to improve soil available water capacity in a coffee plantation with the implementation of the BIHC. This study was conducted at PTPN XII Bangelan, Malang, on March - August 2020. A randomized block design with seven treatments and four replications was used. The BIHC consisted of two-hole depths (30 cm and 60 cm) and two types of compost (goat manure and coffee pulp compost). The soil characteristics observed were water retention (pF) and C-organic at soil depths of 0-20, 20-40, and 40-60 cm. The coffee tree observed were number of leaves and chlorophyll content. Data obtained were subjected to analysis of variance (ANOVA) by the F test and Duncan's Multiple Distance Rate Test (DMRT) at 5% probability, using SPSS program. Results of the study showed that BIHC was able to increase the content of soil C-organic and the available water capacity significantly compared with control treatment. The BIHC implementation could increase soil available water capacity up to 65% at a soil depth of 0-20 cm, up to 60% at a soil depth of 20-40 cm, and up to 51% at a soil depth of 40-60 cm more than the control treatment. The soil available water capacity suggested a significant positive correlation (p≤0.05) with the leaves number of coffee tree and chlorophyll content of leaves.


Sign in / Sign up

Export Citation Format

Share Document