Fire and stand history in two limber pine (Pinus flexilis) and Rocky Mountain bristlecone pine (Pinus aristata) stands in Colorado

2008 ◽  
Vol 17 (3) ◽  
pp. 339 ◽  
Author(s):  
Peter M. Brown ◽  
Anna W. Schoettle

We developed fire-scar and tree-recruitment chronologies from two stands dominated by limber pine and Rocky Mountain bristlecone pine in central and northern Colorado. Population structures in both sites exhibit reverse-J patterns common in uneven-aged forests. Bristlecone pine trees were older than any other at the site or in the limber pine stand, with the oldest tree dating to 780 AD and several dating to the 1000s and 1100s. The oldest trees in the limber pine stand date to the 1400s, with a majority of recruitment after an apparent bark beetle outbreak in the early 1800s. Spatial patterning in the limber pine suggests that the oldest trees established from seed caches left by corvid birds. Fire scars present in the early part of each chronology document that surface fire regimes dominated during certain periods. Decreased fire frequency, increased tree recruitment, and changes in species composition from the 1600s to1800s in the bristlecone pine may be reflective of cooler and wetter conditions during the Little Ice Age. Results suggest that a recent (1978) severe fire in the bristlecone pine stand that caused complete tree mortality was outside the historical range of variability in fire severity for at least the past ~1000 years.

2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.


Author(s):  
Yegang Wu ◽  
Dennis Knight

A landscape approach was used to study fire history and fire behavior in the Douglas-fir forests and foothill vegetation of the Bighorn Canyon National Recreation Area in southcentral Montana. The 3,976 ha study area was divided into 4-ha grid cells, and traditional fire scar analysis and fuel sampling methods were used for data collection in each cell. There have been 15 surface fires during the last 109 years and 10 canopy fires during the last 360 years. The mean fire interval in the forests as a whole, was 7 years for surface fires and 31 years for canopy fires. Using the Weibull function, the recurrent time for fire in a specific grid cell was 212 and 226 years for surface and canopy fires, respectively. The distribution of the probability density function showed that there was a peak of high canopy fire frequency between 150-250 years of stand age. There was no obvious peak period for surface fires in humid ravines, which suggests that surface fires there are not associated with aging. Employing Rothermel's model, a fire behavior model (FIREMDL) was developed and linked it to a geographic information system (GRASS) to simulate flammability of each grid cell under different conditions of fuel moisture and wind velocity. The results suggest that flammability is highly variable because of differences in vegetation and topographic position.


2007 ◽  
Vol 37 (9) ◽  
pp. 1605-1614 ◽  
Author(s):  
Russell A. Parsons ◽  
Emily K. Heyerdahl ◽  
Robert E. Keane ◽  
Brigitte Dorner ◽  
Joseph Fall

We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of estimates of Weibull median probability fire intervals (WMPI) to sampling design and to factors that degrade the fire scar record: failure of a tree to record a fire and loss of fire-scarred trees. Accuracy was affected by all of the factors investigated and generally varied with fire regime type. The maximum error was from degradation of the record, primarily because degradation reduced the number of intervals from which WMPI was estimated. The sampling designs were roughly equal in their ability to capture overall WMPI, regardless of fire regime, but the gridded design yielded more accurate estimates of spatial variation in WMPI. Accuracy in WMPI increased with increasing number of points sampled for all fire regimes and sampling designs, but the number of points needed to obtain accurate estimates was greater for fire regimes with complex spatial patterns of fire intervals than for those with relatively homogeneous patterns.


2015 ◽  
Vol 45 (11) ◽  
pp. 1587-1596 ◽  
Author(s):  
Larissa L. Yocom-Kent ◽  
Peter Z. Fulé ◽  
Windy A. Bunn ◽  
Eric G. Gdula

Two ends of the fire regime spectrum are a frequent low-intensity fire regime and an infrequent high-intensity fire regime, but intermediate fire regimes combine high- and low-severity fire over space and time. We used fire-scar and tree-age data to reconstruct fire regime attributes of mixed-conifer and aspen forests in the North Rim area of Grand Canyon National Park, with a goal of estimating patch sizes of historical high-severity fire and comparing them with modern patch sizes. We used three methods based on (i) aspen groves, (ii) even-aged stands, and (iii) inverse distance weighting, to estimate occurrence and patch sizes of historical high-severity fire. Evidence of high-severity fire was common in the 1800s, and high-severity fire years were associated with drought. High-severity fire patch sizes likely ranged from 10−1 to 102 ha. However, the forest is quite young, and we cannot rule out a historical large high-severity fire that could have reinitiated much of the 1400 ha study area. Fire scars, which are indicative of low-severity fire, were also common. Historical fire was likely heterogeneous across the landscape. Maintaining heterogeneity of fire severity, size, and frequency would promote heterogeneity of forest structure and composition and resilience to future disturbances.


2012 ◽  
Vol 42 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Emily K. Heyerdahl ◽  
Ken Lertzman ◽  
Carmen M. Wong

Historical fire severity is poorly characterized for dry forests in the interior west of North America. We inferred a multicentury history of fire severity from tree rings in Douglas-fir ( Pseudotsuga menziesii var. glauca (Beissn.) Franco) – ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) forests in the southern interior of British Columbia, Canada. In 2 ha plots distributed systematically over 1105 ha, we determined the dates of fire scars, indicators of low-severity fire, from 125 trees and inferred dates of even-aged cohorts, potential indicators of high-severity fire, from establishment dates of 1270 trees. Most (76%) of the 41 plots contained fire-scarred trees with a mean plot-composite fire scar interval of 21 years (1700–1900). Most (76%) also contained one or two cohorts. At the plot scale, we inferred that the fire regime at most plots was of mixed severity through time (66%) and at the remaining plots of low (20%), high (10%), or unknown (4%) severity through time. We suggest that across our study area, the fire regime was mixed severity over the past several centuries, with low-severity fires most common and often extensive but small, high-severity disturbances also occasionally occurred. Our results present strong evidence for the importance of mixed-severity fire regimes in which low-severity fires dominate in interior Douglas-fir – ponderosa pine forests in western Canada.


Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 311-311 ◽  
Author(s):  
J. T. Blodgett ◽  
K. F. Sullivan

White pine blister rust caused by Cronartium ribicola was introduced into North America in the early 20th century and is spreading throughout the range of five-needle pines. In northern Colorado, this pathogen was first observed in 1998 on limber pine (Pinus flexilis) (1). It has not been reported on Rocky Mountain or Great Basin bristlecone pine (Pinus aristata and P. longaeva, respectively) in nature. However, Rocky Mountain bristlecone pine is susceptible to the disease when artificially inoculated (2). In October 2003, a Rocky Mountain bristlecone pine was found infected with C. ribicola in the Great Sand Dunes National Monument, Alamosa County, Colorado. Seven branch cankers were observed on the tree. Cankers ranged in length from 15 to 41 cm and were estimated to be approximately 5 to 7 years old. Distinct C. ribicola branch symptoms were observed, including flagging, spindle-shaped swellings, and 6 mm long aecial scars. A branch was deposited at the Colorado State Herbarium. Microscopic examination of spores within remnant aecial blisters revealed aeciospores characteristic of C. ribicola (yellow-orange, ellipsoid, verrucose, and 19 × 25 μm). Cankers were only observed on one bristlecone pine. However, most limber pines in the area were infected with C. ribicola, including a limber pine less than 1 m from the infected bristlecone pine. To our knowledge, this is the first report that shows Rocky Mountain bristlecone pine can become infected naturally, and the pathogen is further south in Colorado on limber pine than previously reported. These observations suggest the need for a more complete investigation of this disease on bristlecone pines. References: (1) D. W. Johnson and W. R. Jacobi. Plant Dis. 84:595, 2000. (2) B. R. Stephan, Allg. Forst Z. 28:695, 1985.


The Holocene ◽  
2019 ◽  
Vol 29 (7) ◽  
pp. 1223-1233 ◽  
Author(s):  
Jarunetr Sae-Lim ◽  
James M Russell ◽  
Richard S Vachula ◽  
Robert M Holmes ◽  
Paul J Mann ◽  
...  

Wildfire is an important disturbance to Arctic tundra ecosystems. In the coming decades, tundra fire frequency, intensity, and extent are projected to increase because of anthropogenic climate change. To more accurately predict the effects of climate change on tundra fire regimes, it is critical to have detailed knowledge of the natural frequency and extent of past wildfires and how they responded to past climate variability. We present analyses of fire frequency and temperature from a lake sediment core from the Yukon-Kuskokwim (YK) Delta. Our ca. 1000 macroscopic charcoal record shows more frequent but possibly less severe tundra fires during the first half of the last millennium, whereas less frequent, possibly more severe fires characterize the latter half. Our temperature reconstruction, based on distributional changes of branched glycerol dialkyl glycerol tetraethers (brGDGTs), shows slightly warmer conditions from ca. AD 1000 to 1500, and cooler conditions thereafter (ca. AD 1500 to 2000), suggesting that fire frequency increases when climate is relatively warmer in this region. When wildfires occur more frequently, fire severity may decrease because of limited biomass (fuel source) accumulating between fires. The data suggest that tundra ecosystems are highly sensitive to climate change, and that a warmer climate, which is predicted to develop in the near future, will result in more frequent tundra wildfires.


2009 ◽  
Vol 72 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Susan J. Prichard ◽  
Ze'ev Gedalof ◽  
W. Wyatt Oswald ◽  
David L. Peterson

AbstractWe reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.


1990 ◽  
Vol 20 (2) ◽  
pp. 219-232 ◽  
Author(s):  
James S. Clark

Long-term fire, climate, and vegetation data were used together with simulation models to estimate the effects of 20th century climate change and fire suppression on fire regime and organic-matter accumulation in mixed-conifer stands of Itasca State Park, northwestern Minnesota. Spatial and temporal patterns of fire occurrence and forest composition over the last 150 years determined by stratigraphic charcoal, fire-scar, tree-ring, and pollen analyses in separate studies provide evidence for vegetation and fire relationships. Water balances constructed from temperature and precipitation data collected since 1840 were used to model fire probability and intensity of burn before fire suppression which began in 1910. Existing patterns of biomass accumulation in forest-floor, herb, shrub, and tree components were compared with fire history and topographic variability to provide a spatial perspective on fire effects. Simulation models used these relationships to estimate (i) how accumulation of organic matter had changed through the past under the different fire regimes that prevailed on different topographic aspects, (ii) the changes brought about by fire suppression in 1910, and (iii) the fire regimes and their effects that would have prevailed since fire suppression with the warm–dry climate of the 20th century. Humus, litter, shrubs, and herb cover were less abundant and more variable spatially and temporally before fire suppression. Spatial variability in forest-floor organic matter, which resulted from different fire frequencies in different vegetation and topographic settings before fire suppression, was largely gone by 1920 as a result of fire suppression. Had fire suppression not been instituted in 1910, fire frequency would have increased by 20–40% in the 20th century because of warmer and drier conditions. Forest-floor oganic matter would have been largely depleted by frequent and severe fires exposing mineral soils, particularly during the drought years of the 1930s. Herb biomass would have increased, shrubs would have been more variable, and tree seedling establishment would have been substantially altered. Time required for buildup of fuels limits the extent to which increased moisture deficits increase fire frequency.


Sign in / Sign up

Export Citation Format

Share Document