surface fires
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 20)

H-INDEX

23
(FIVE YEARS 1)

Author(s):  
Caius Ribeiro-Kumara ◽  
Cristina Santín ◽  
Stefan H. Doerr ◽  
Jukka Pumpanen ◽  
Greg Baxter ◽  
...  

Fires are an important perturbation for the carbon (C) dynamics of boreal forests, especially when they are stand-replacing. In North American boreal forests, crown fires are predominant and, therefore, the most studied. However, surface fires can also lead to major tree mortality with substantial implications for the C balance. Here, we assess the short- (hours – days) to medium-term (1 – 3 years) effects of the different fire types (surface vs. crown) on the postfire soil C effluxes in jack pine and black spruce forest stands in the Northwest Territories, Canada. We found that while trees were instantly killed by the four crown fires studied, trees also died within one year after two of three surface fires studied. Associated with this tree mortality, soil autotrophic respiration decreased after both fire types, although at different timings. The soil heterotrophic respiration was either lower or unchanged when measured 1 – 3 years after either fire type, but was increased when measured immediately after a surface fire, possibly due to the interaction between ash generation and wetting performed to suppress the fire. Our results suggest that both fire types can thus substantially alter C fluxes in the short- to medium-term, both through changes in vegetation and the soil environment.


Trees ◽  
2021 ◽  
Author(s):  
Surabhi Gumber ◽  
Ripu Daman Singh ◽  
Jeet Ram ◽  
Ashish Tewari ◽  
Surendra P. Singh

2021 ◽  
Vol 13 (19) ◽  
pp. 3843
Author(s):  
Dale Hamilton ◽  
Kamden Brothers ◽  
Cole McCall ◽  
Bryn Gautier ◽  
Tyler Shea

Support vector machines are shown to be highly effective in mapping burn extent from hyperspatial imagery in grasslands. Unfortunately, this pixel-based method is hampered in forested environments that have experienced low-intensity fires because unburned tree crowns obstruct the view of the surface vegetation. This obstruction causes surface fires to be misclassified as unburned. To account for misclassifying areas under tree crowns, trees surrounded by surface burn can be assumed to have been burned underneath. This effort used a mask region-based convolutional neural network (MR-CNN) and support vector machine (SVM) to determine trees and burned pixels in a post-fire forest. The output classifications of the MR-CNN and SVM were used to identify tree crowns in the image surrounded by burned surface vegetation pixels. These classifications were also used to label the pixels under the tree as being within the fire’s extent. This approach results in higher burn extent mapping accuracy by eliminating burn extent false negatives from surface burns obscured by unburned tree crowns, achieving a nine percentage point increase in burn extent mapping accuracy.


2021 ◽  
Author(s):  
Ajinkya Desai ◽  
Scott Goodrick ◽  
Tirtha Banerjee

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 978
Author(s):  
Chéïma Barhoumi ◽  
Marianne Vogel ◽  
Lucas Dugerdil ◽  
Hanane Limani ◽  
Sébastien Joannin ◽  
...  

Catastrophic fire years that have taken place during the last decade in Siberia, and more generally within the boreal forest, have been directly linked to global warming and had strong repercussions on boreal ecosystems and human populations. In this context the study of the past dynamics of these fires is essential for understanding their links with climate, vegetation and human activity changes on longer time scales than the last few decades. However, few studies on fire dynamics are available for Siberia, and none have been conducted for the entire Holocene period. This study presents the first fire history reconstruction of this area during the Holocene based on charcoals sequestered in sediments of two lakes located on the southern shore of Lake Baikal, in Siberia. The results show a similar trend in the two lakes, with high frequency and high peak magnitude during the Early Holocene and low magnitudes after 6500 cal. yr BP. This difference is interpreted as crown fires versus surface fires. According to pollen records (Dulikha, Vydrino, Ochkovoe) available near the studied lakes, a vegetation transition occurred at the same time. Picea obovata, which has a tree structure prone to crown fires, was dominant during the Early humid Holocene. After 6500 cal. yr BP, conditions were drier and Pinus sylvestris and Pinus sibirica became the dominant species; their tree structure favors surface fires. In addition to vegetation dynamics, the nearby pollen sequence from Dulikha has been used to provide quantitative estimates of past climate, indicating an Early to Middle Holocene climatic optimum between 8000 and 5000 cal. yr BP and an increase in temperatures at the end of the Holocene. These results have been compared to outputs from regional climate models for the Lake Baikal latitudes. Fire dynamics appear to have been more linked to the vegetation than climatic conditions. Over the past 1500 years, the greater presence of human populations has firstly resulted in an increase in the fire frequency, then in its maintenance and finally in its suppression, which may possibly have been due to very recent fire management, i.e., after ca 500 cal. BP.


2021 ◽  
Author(s):  
Scott R Abella ◽  
LaRae A Sprow ◽  
Timothy A Schetter

Abstract Delayed tree mortality can contribute to variability in fire effects in forests, but its prevalence is not well understood in eastern North American oak forests where a management goal is using prescribed fire to shape forest density and composition. To assess potential delayed mortality after prescribed fires, we tracked the fates of 690 trees of four species in burned and 542 trees in unburned oak forests in northwestern Ohio, USA, and modeled survival using tree diameter and bole char. Delayed mortality, occurring 3–4 growing seasons after fire and in addition to initial mortality (1–2 growing seasons after fire), varied with species and tree diameter. Compared to initial mortality, delayed mortality resulted in eleven times more small-diameter (1–13 cm) red maple (Acer rubrum) dying after fire. White oak (Quercus alba), 1–25 cm in diameter, also incurred delayed mortality (five-times increase in dead trees). Neither sassafras (Sassafras albidum) nor black oak (Quercus velutina) displayed delayed mortality. Background tree mortality in unburned sites was minimal (0.4% per year across species). Logistic regression to model canopy survival selected only stem diameter for burned red maple trees, whereas both diameter and bole char related to survival in other species. Results suggest that (1) monitoring postfire tree mortality in oak forests should extend for at least four growing seasons to detect delayed mortality in some species, and that (2) single surface fires may eventually reduce encroaching red maple in oak forests more than initial postfire years indicate. Study Implications Delayed tree mortality, a poorly understood phenomenon in eastern North American oak forests, varied with species and stem diameter after prescribed fires in northwestern Ohio oak forests. Accompanied by minimal mortality of large oaks (>25 cm in diameter), single surface fires appear capable of reducing density of encroaching red maple stems, but these reductions may not appear for at least 3–4 growing seasons after fires.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2135
Author(s):  
Matthew B. Dickinson ◽  
Cyle E. Wold ◽  
Bret W. Butler ◽  
Robert L. Kremens ◽  
Daniel Jimenez ◽  
...  

Sensible energy is the primary mode of heat dissipation from combustion in wildland surface fires. However, despite its importance to fire dynamics, smoke transport, and in determining ecological effects, it is not routinely measured. McCaffrey and Heskestad (A robust bidirectional low-velocity probe for flame and fire application. Combustion and Flame 26:125–127, 1976.) describe measurements of flame velocity from a bi-directional probe which, when combined with gas temperature measurements, can be used to estimate sensible heat fluxes. In this first field application of bi-directional probes, we describe vertical and horizontal sensible heat fluxes during the RxCADRE experimental surface fires in longleaf pine savanna and open ranges at Eglin Air Force Base, Florida. Flame-front sensible energy is the time-integral of heat flux over a residence time, here defined by the rise in gas temperatures above ambient. Horizontal flow velocities and energies were larger than vertical velocities and energies. Sensible heat flux and energy measurements were coordinated with overhead radiometer measurements from which we estimated fire energy (total energy generated by combustion) under the assumption that 17% of fire energy is radiated. In approximation, horizontal, vertical, and resultant sensible energies averaged 75%, 54%, and 64%, respectively, of fire energy. While promising, measurement challenges remain, including obtaining accurate gas and velocity measurements and capturing three-dimensional flow in the field.


2021 ◽  
Author(s):  
Angelica Feurdean

Abstract. The analysis of charcoal fragments in peat and lake sediments is the most widely used approach to reconstruct past biomass burning. With a few exceptions, this method typically relies on the quantification of the total charcoal content of the sediment. To enhance charcoal analyses for the reconstruction of past fire regimes, and to make the method more relevant to studies of both plant evolution and fire management, more information must be extracted from charcoal particles. Here, I burned in the laboratory seven fuel types comprising 17 species from boreal Siberia, and build on published schemes to develop morphometric and finer diagnostic classifications of the experimentally charred particles. As most of the species used in this study are common to Northern Hemisphere forests and peatlands, these results can be directly applicable over a broad geographical scale. Results show that the effect of temperature on charcoal production is fuel dependent. Graminoids and Sphagnum, and wood (trunk) lose the most mass at low burn temperatures, whereas heathland shrub leaves, brown moss, and ferns retain the most mass at high burn temperatures. In contrast to the wood of trunk, the wood of twigs retained their mass at intermediate temperature. This suggests that species with low mass retention at hotter burning temperatures might be underrepresented in the fossil charcoal record. Charred particle aspect ratio (L / W) appeared to be the strongest indicator of the fuel type burnt. Graminoid charcoals are more elongate than those of all other fuel types, leaf charcoals are the shortest and bulkiest, and twig and wood charcoals are intermediate. Finer diagnostic features were the most useful in distinguishing between wood, graminoid, and leaf particles, but further distinctions within these fuel types are difficult. High-aspect-ratio particles dominated by graminoid and Sphagnum morphologies are robust indicators of cooler surface fires. Contrastingly, abundant wood and leaf morphologies and low-aspect-ratio particles likely indicate higher-temperature fires. However, the overlapping morphologies of leaves and wood from trees and shrubs make it hard to distinguish between high-intensity surface fires combusting living shrubs and dead wood and leaves or high-intensity crown fires combusting living trees. Despite these limitations, the combined use of charred-particle aspect ratios and fuel morphotypes can aid in more robustly interpreting changes in fuel source and fire type, thereby substantially refining histories of past wildfires. Further fields of investigation to improve the interpretation of the fossil charcoal records will require: i) More in-depth knowledge of plant anatomy for a better determination of fuel sources; ii) Relate the proportion of particular charcoal morphotypes to the quantity of biomass; iii) Link the chemical composition of fuels, combustion temperature, and charcoal production. The advanced use of image-recognition software to collect data on other charcoal features could also aid in extracting fire temperatures as well as a change in particles morphology and morphometry during particles transportation.


2021 ◽  
Vol 118 (4) ◽  
pp. e2018733118
Author(s):  
Christopher I. Roos ◽  
Thomas W. Swetnam ◽  
T. J. Ferguson ◽  
Matthew J. Liebmann ◽  
Rachel A. Loehman ◽  
...  

The intersection of expanding human development and wildland landscapes—the “wildland–urban interface” or WUI—is one of the most vexing contexts for fire management because it involves complex interacting systems of people and nature. Here, we document the dynamism and stability of an ancient WUI that was apparently sustainable for more than 500 y. We combine ethnography, archaeology, paleoecology, and ecological modeling to infer intensive wood and fire use by Native American ancestors of Jemez Pueblo and the consequences on fire size, fire–climate relationships, and fire intensity. Initial settlement of northern New Mexico by Jemez farmers increased fire activity within an already dynamic landscape that experienced frequent fires. Wood harvesting for domestic fuel and architectural uses and abundant, small, patchy fires created a landscape that burned often but only rarely burned extensively. Depopulation of the forested landscape due to Spanish colonial impacts resulted in a rebound of fuels accompanied by the return of widely spreading, frequent surface fires. The sequence of more than 500 y of perennial small fires and wood collecting followed by frequent “free-range” wildland surface fires made the landscape resistant to extreme fire behavior, even when climate was conducive and surface fires were large. The ancient Jemez WUI offers an alternative model for fire management in modern WUI in the western United States, and possibly other settings where local management of woody fuels through use (domestic wood collecting) coupled with small prescribed fires may make these communities both self-reliant and more resilient to wildfire hazards.


2021 ◽  
Vol 273 ◽  
pp. 04006
Author(s):  
Oleg Denisov ◽  
Elena Andreeva

The article is devoted to the search for an innovative approach to the elimination of combustion foci at solid municipal waste landfills. In connection with the increase in the number of solid municipal waste landfills near settlements, a number of geoecological problems are increasing. One of the most complex geoecological problems arising in connection with the operation of solid municipal waste landfills is the problem of the genesis and development of surface fires in the layer of household waste. At the same time, concern is caused not only by the actual dangerous factors of the spread of fire, but also by the subsequent significant pollution of the surface layer with air by combustion products, including those of a carcinogenic or mutagenic nature. To achieve this goal, the article describes an innovative approach to eliminating combustion foci at solid municipal waste landfills: an innovative device developed by the authors of the study - a mechanical fire hydrant for wetting burning deep layers of consumption waste with a fire-extinguishing liquid.


Sign in / Sign up

Export Citation Format

Share Document