Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina

2015 ◽  
Vol 24 (3) ◽  
pp. 340 ◽  
Author(s):  
Lucas O. Bianchi ◽  
Guillermo E. Defossé

Wildfires are common from summer to early fall in Patagonian forests of Argentina. Live fuel moisture content (LFMC) and leaf ignition are important factors for understanding fire behaviour. In this study, we determined seasonal LFMC and leaf ignition of some key fire-prone species of these forests, and their relationships with environmental variables. Species investigated were the native trees ñire (Nothofagus antarctica) and cypress (Austrocedrus chilensis), the understorey tree-like radal (Lomatia hirsuta) and laura (Schinus patagonicus), the bamboo caña colihue (Chusquea culeou), and the non-native black poplar (Populus nigra). LFMC differed among species, with caña colihue having lower values (LFMC <100%); ñire, laura, cypress, and radal having medium values (110–220%); and black poplar, upper values (>220%). Ignition characteristics differed among species (caña colihue > ñire > radal > cypress > laura > black poplar) and were inversely related to LFMC. Correlations between LFMC and environmental variables were highly significant for caña colihue, significant for ñire, radal, and laura, and weakly significant or non-significant for cypress and black poplar. These results contribute to our understanding of fire behaviour, and validate the fuel typology for Patagonian forests. At the same time, they add some useful knowledge for comparison with other fire-prone Mediterranean ecosystems around the world.


2019 ◽  
Vol 28 (2) ◽  
pp. 127 ◽  
Author(s):  
F. Pimont ◽  
J. Ruffault ◽  
N. K. Martin-StPaul ◽  
J.-L. Dupuy

Live fuel moisture content (LFMC) influences fire activity at landscape scale and fire behaviour in laboratory experiments. However, field evidence linking LFMC to fire behaviour are very limited, despite numerous field experiments. In this study, we reanalyse a shrubland fire dataset with a special focus on LFMC to investigate this counterintuitive outcome. We found that this controversy might result from three causes. First, the range of experimental LFMC data was too moist to reveal a significant effect with the widespread exponential or power functions. Indeed, LFMC exhibited a strong effect below 100%, but marginal above this threshold, contrary to these functions. Second, we found that the LFMC significance was unlikely when the number of fire experiments was smaller than 40. Finally, an analysis suggested that 10 to 15% measurement error – arising from the estimation of environmental variables from field measurements – could lead to an underestimation by 30% of the LFMC effect. The LFMC effect in field experiments is thus stronger than previously reported in the range of LFMC occurring during the French fire season and in accordance with observations at different scales. This highlights the need to improve our understanding of the relationship between LFMC and fire behaviour to refine fire-danger predictions.



2020 ◽  
Vol 245 ◽  
pp. 111797 ◽  
Author(s):  
Krishna Rao ◽  
A. Park Williams ◽  
Jacqueline Fortin Flefil ◽  
Alexandra G. Konings


2018 ◽  
Vol 205 ◽  
pp. 210-223 ◽  
Author(s):  
Lei Fan ◽  
J.-P. Wigneron ◽  
Qing Xiao ◽  
A. Al-Yaari ◽  
Jianguang Wen ◽  
...  




Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 887 ◽  
Author(s):  
Kaiwei Luo ◽  
Xingwen Quan ◽  
Binbin He ◽  
Marta Yebra

Previous studies have shown that Live Fuel Moisture Content (LFMC) is a crucial driver affecting wildfire occurrence worldwide, but the effect of LFMC in driving wildfire occurrence still remains unexplored over the southwest China ecosystem, an area historically vulnerable to wildfires. To this end, we took 10-years of LFMC dynamics retrieved from Moderate Resolution Imaging Spectrometer (MODIS) reflectance product using the physical Radiative Transfer Model (RTM) and the wildfire events extracted from the MODIS Burned Area (BA) product to explore the relations between LFMC and forest/grassland fire occurrence across the subtropical highland zone (Cwa) and humid subtropical zone (Cwb) over southwest China. The statistical results of pre-fire LFMC and cumulative burned area show that distinct pre-fire LFMC critical thresholds were identified for Cwa (151.3%, 123.1%, and 51.4% for forest, and 138.1%, 72.8%, and 13.1% for grassland) and Cwb (115.0% and 54.4% for forest, and 137.5%, 69.0%, and 10.6% for grassland) zones. Below these thresholds, the fire occurrence and the burned area increased significantly. Additionally, a significant decreasing trend on LFMC dynamics was found during the days prior to two large fire events, Qiubei forest fire and Lantern Mountain grassland fire that broke during the 2009/2010 and 2015/2016 fire seasons, respectively. The minimum LFMC values reached prior to the fires (49.8% and 17.3%) were close to the lowest critical LFMC thresholds we reported for forest (51.4%) and grassland (13.1%). Further LFMC trend analysis revealed that the regional median LFMC dynamics for the 2009/2010 and 2015/2016 fire seasons were also significantly lower than the 10-year LFMC of the region. Hence, this study demonstrated that the LFMC dynamics explained wildfire occurrence in these fire-prone regions over southwest China, allowing the possibility to develop a new operational wildfire danger forecasting model over this area by considering the satellite-derived LFMC product.



2013 ◽  
Vol 136 ◽  
pp. 455-468 ◽  
Author(s):  
Marta Yebra ◽  
Philip E. Dennison ◽  
Emilio Chuvieco ◽  
David Riaño ◽  
Philip Zylstra ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document