When the ‘native cat’ would ‘plague’: historical hyperabundance in the quoll (Marsupialia : Dasyuridae) and an assessment of the role of disease, cats and foxes in its curtailment

2014 ◽  
Vol 62 (4) ◽  
pp. 294 ◽  
Author(s):  
David Peacock ◽  
Ian Abbott

Since the European settlement of Australia in 1788, 25 mainland terrestrial mammal species have become extinct, more than on any other continent during this period. To determine if the causal factors are still active, it is necessary to better understand the species and their status preceding these regional extirpations or extinctions, and examine the historical record for clues to the cause(s) of these declines. From an extensive review of historical material, primarily newspaper accounts, we collated >2700 accounts of quolls. We discovered 36 accounts that demonstrate the propensity for quolls to become hyperabundant. The geographical distribution of accounts implies that most refer to Dasyurus viverrinus, but an account from Normanton district (Queensland) likely applies to D. hallucatus. More than 110 accounts demonstrate that disease/parasite epizootics occurred in south-eastern Australia, commencing on mainland Australia possibly in the goldfields region of Victoria in the 1850s, or in south-eastern South Australia and south-western Victoria in the mid to late 1860s, and implicate these as the initial primary factor in the regional extirpation of Australia’s quolls. The loss of D. viverrinus populations in south-eastern Australia was reportedly from population abundances and densities that were sporadically extraordinarily high, hence their loss appears more pronounced than previously suspected. Accounts describing the widespread, rapid and major loss of quolls suggest the possible involvement of several pathogens. Ectoparasites such as Uropsylla tasmanica and ticks appear to be described in detail in some accounts. A few others state comortality of Felis catus and Canis lupus familiaris, suggestive of a disease of either or both of these species, such as Canine Distemper Virus, a morbillivirus with a propensity to be non-host specific, that may have caused the decline of the quolls, perhaps vectored by the reported ectoparasites. We also collated 23 presumed independent accounts of cats negatively impacting quolls, two of which describe significant mortality, and three presumed independent accounts of fox predation. These highlight the capacity of both of these introduced predators to have reduced quoll distribution and abundance.

1969 ◽  
Vol 17 (4) ◽  
pp. 665 ◽  
Author(s):  
PD Dwyer

In south-eastern Australia banding of M. schreibersii has been concentrated in four areas: north-eastern New South Wales, south-eastern New South Wales, south-eastern Victoria, and south-western Victoria and south-eastern South Australia. The present paper analyses 2083 reported movements. Only 17 of these are from one of the four areas to another with the longest movement being 810 miles. Biologically and geographically separate populations of M. schreibersii are recognized in both north-eastern and south-eastern New South Wales. Each population has its basis in dependence upon a specific nursery site which is used annually by nearly all adult females in that population. Boundaries of population ranges in New South Wales are considered to be prominent features of physiography (i.e. divides). Bats move between population ranges less often than they move within population ranges. This cannot be explained solely in terms of the distances separating roosts. Available movement records from Victoria and South Australia are consistent with the pattern described for New South Wales. Two biologically recognizable populations (i.e, different birth periods) occur in south-western Victoria and south-eastern South Australia but these may have overlapping ranges. Only one nursery colony of M. schreibersii is known from south-eastern Victoria. On present evidence it remains possible that the apparent integrity of the population associated with this nursery is merely a consequence of distance from other areas of banding activity. Detailed analyses of movements in bats may provide direct evidence as to the kinds of cues by which a given species navigates. Thus the physiographic basis described for population ranges in New South Wales is consistent with the view that M. schreibersii may orientate to waterways or divides or both. The probability that there are area differences in the subtlety or nature of navigational cues is implied by the different physiographic circumstances of south-western Victoria and south-eastern South Australia. It is suggested that knowledge of population range boundaries may aid planning of meaningful homing experiments.


2020 ◽  
Vol 42 (3) ◽  
pp. 321
Author(s):  
B. D. Cooke

Swamp wallabies have dramatically extended their distribution through western Victoria and south-eastern South Australia over the last 40 years. Newspaper reports from 1875 onwards show that on European settlement, wallaby populations were confined to eastern Victoria, including the ranges around Melbourne, the Otway Ranges and Portland District of south-western Victoria, and a tiny part of south-eastern South Australia. Populations contracted further with intense hunting for the fur trade until the 1930s. In the late 1970s, however, wallabies began spreading into drier habitats than those initially recorded. Possible causes underlying this change in distribution are discussed; some seem unlikely but, because wallabies began spreading soon after the introduction of European rabbit fleas as vectors of myxomatosis, the cumulative effects of releases of biological agents to control rabbits appear important. A caution is given on assuming that thick vegetation in high-rainfall areas provides the only habitat suitable for swamp wallabies, but, most importantly, the study shows how native mammals may benefit if rabbit abundance is reduced.


1999 ◽  
Vol 50 (7) ◽  
pp. 1233 ◽  
Author(s):  
G. H. Baker ◽  
P. J. Carter ◽  
V. J. Barrett

The earthworm fauna of pastures in south-eastern Australia is dominated by exotic lumbricid earthworms, in particular the endogeic species, Aporrectodea caliginosa and A. trapezoides. Anecic species such as A. longa are very rare. All 3 species were introduced within cages in 10 pastures on a range of soil types within the region. Five months later, A. longa had generally survived the best and A. trapezoides the worst. The survivals and weights of individual worms varied between sites for all 3 species. The survivals of A. caliginosa and A. longa, and to a lesser extent A. trapezoides, were positively correlated with soil clay content. The weights of A. caliginosa and A. longa, but not A. trapezoides, were positively correlated with soil P content. The survivals and weights of A. longa and A. trapezoides and the weights only of A. caliginosa decreased with increasing inoculation density, suggesting increased intraspecific competition for resources, particularly in the first two species. A. longa reduced the abundance and biomass of the exotic acanthodrilid earthworm, Microscolex dubius, at one site, and the total biomass of 3 native megascolecid species at another, when these latter species occurred as contaminants in A. longa cages. The addition of lime had no effect on the survivals and weights of A. caliginosa, A. longa, and A. trapezoides, although the soils were acid at the sites tested. The addition of sheep dung increased the survival and weights of some species at some sites. Mechanical disturbance of the soil within cages reduced the survivals of A. longa and A. trapezoides. A. longa was released without being caged at 25 sites within one pasture in South Australia. Four years later, it was recovered at all release points. A. longa has the potential to colonise pastures widely throughout the higher rainfall regions of south-eastern Australia.


2015 ◽  
Vol 21 (4) ◽  
pp. 271 ◽  
Author(s):  
Gregory R. Johnston ◽  
Maxwell H. Waterman ◽  
Clare E. Manning

Globally, pelican populations have decreased, with three species being of conservation concern. Australian pelicans (Pelecanus conspicillatus) are not regarded as endangered, but have declined across south-eastern Australia. Information on their movements and causes of mortality are required to interpret the importance of these regional declines to the species’ global population. We explored patterns of movement and causes of mortality by analysing recoveries from 14 615 Australian pelicans banded over 37 years between 1969 and 2006. Data from 243 leg band recoveries showed that Australian pelicans move distances of up to 3206 km, and travel across the species’ entire geographic range, within a year of fledging. We found little evidence for the popular notion that these birds move en masse from the coast to inland areas in response to flooding rains. Maximum recorded age of a banded Australian pelican was 15 years. The banding data suggest that the regional pelican declines could reflect long-distance movements rather than an overall population response. However, a concentration of band returns from south-eastern Australia where the declines have been recorded, and the high incidence of human-induced deaths (16.4%) suggest otherwise. Accurate assessment of population trends in long-lived, long-distance nomads such as Australian pelicans requires assessment at a continental scale. Our results emphasise the importance of knowledge about fundamental aspects of a species’ biology for accurate interpretation of regional population declines.


2001 ◽  
Vol 52 (4) ◽  
pp. 631 ◽  
Author(s):  
B. D. Bruce ◽  
F. J. Neira ◽  
R. W. Bradford

The early life histories of the commercially important blue and spotted warehous (Seriolella brama and S. punctata) were examined on the basis of archived ichthyoplankton samples collected over broad areas of southern Australia. Larvae of both species were widely distributed during winter and spring within shelf and slope waters. Larvae of S. brama were recorded from Kangaroo Island, South Australia (SA), to southern New South Wales (NSW). Seriolella punctata larvae were recorded from western Tasmania to southern NSW. Back-calculated spawning dates, based on otolith microstructure, indicated that spawning predominantly occurs during late July and August but that the timing of spawning varies between regions. The abundances of small larvae (<5. 0 mm body length) were highest for both species off western Tasmania and southern NSW. No small S. brama larvae were recorded between southern Tasmania and southern NSW, whereas low but consistent numbers of small S. punctata larvae were found between these regions. The data suggest that there are separate spawning areas for S. brama in western and eastern regions of Australia’s South East Fishery. The pattern for S. punctata is less clear, but suggests a more continuous link among populations in south-eastern Australia.


2016 ◽  
Vol 67 (11) ◽  
pp. 1597 ◽  
Author(s):  
D. J. Colgan

Understanding a region’s phylogeography is essential for an evolutionary perspective on its biological conservation. This review examines the phylogeographic structures in south-eastern Australia that have been revealed by mitochondrial DNA sequencing and other genetic techniques and examines whether they can be explained by known factors. The review covers species that occur in the intertidal zone or, even infrequently, in the shallow subtidal zone. The coasts most frequently associated with phylogeographic structure are the boundaries between the Peronian and Maugean biogeographical provinces in southern New South Wales and the Maugean and Flindersian provinces in South Australia, the areas in Victoria and north-eastern Tasmania separated by the Bassian Isthmus at glacial maxima, long sandy stretches without rocky intertidal habitat on the Ninety Mile Beach in Victoria and the Younghusband Peninsula–Coorong in South Australia, southern Tasmania and Bass Strait, which acts as a barrier for littoral species.


1979 ◽  
Vol 30 (2) ◽  
pp. 237 ◽  
Author(s):  
W Koste

Brachionus keikoa, sp. nov., Keratella shieli, sp. nov. (family Brachionidae Bartos, 1959), and Filinia pejleri var. grandis, var. nov. (family Filiniidae Bartos, 1959), from the River Murray at Mannum, South Australia, and Lecane ungulata var. australiensis, var. nov. (family Lecanidae Bartos, 1959), from waters associated with the Goulburn River at Alexandra, Victoria, are described and figured. B. keikoa has affinities with the angularis-caudatus species group, differing in the location of the foot-opening, the site of the lateral antennae, and in the morphology of the lorica surface. K. shieli is closely related to the quadrata species group, differing in the morphology of the caudal plate and lorica facets. L. (s.str.) ungulata var. australiensis differs from the type in the form of the anterior lorica border and in larger size. F. pejleri var. grandis has the greatest measurements in length of body and bristles of all described forms so far known from other continents. Figures of some 10 species of Brachionus and of eight species of Keratella are presented for comparative purposes.


2021 ◽  
Author(s):  
Nuno Tavares Martins ◽  
Carlos Frederico D. Gurgel ◽  
Tracey M. Spokes ◽  
Valéria Cassano

Defining species in the brown algal genus Colpomenia is a challenging endeavour because of their morphological similarity, overlapping phenotypic variation, the absence of conspicuous diagnostic characters, and often lack of reproductive structures crucial for their identification. Thus, the use of molecular tools has become widely used to study Colpomenia taxonomy and evolution. The following four Colpomenia species are described along the Australian coast: C. claytoniae M.Boo, K.M.Lee, G.Y.Cho &amp; W.Nelson, C. ecuticulata M.J.Parsons, C. peregrina Sauvageau, and C. sinuosa (Mertens ex Roth) Derbès &amp; Solier. The objective of this study was to assess the diversity of Colpomenia species in southern and south-eastern Australia by using DNA barcoding techniques and single-marker species delimitation methods. We generated 44 new COI-5P DNA sequences from nine different populations across three Australian states (South Australia, Victoria and Tasmania), and applied 13 variations of four species delimitation methods (ABDG, SPN, PTP, GMYC). Our results recognised three Colpomenia species in the region, namely, C. sinuosa, C. claytoniae, and C. peregrina. Colpomenia sinuosa is the most widely distributed species in Australia. Colpomenia peregrina and C. claytoniae presented high levels of intraspecific genetic divergence. We did not find C. ecuticulata, although it has been previously reported from nearby our sampling area.


Sign in / Sign up

Export Citation Format

Share Document