scholarly journals Distinct roles of transcription factors TFIIIB and TFIIIC in RNA polymerase III transcription reinitiation

2004 ◽  
Vol 101 (37) ◽  
pp. 13442-13447 ◽  
Author(s):  
R. Ferrari ◽  
C. Rivetti ◽  
J. Acker ◽  
G. Dieci
1996 ◽  
Vol 16 (12) ◽  
pp. 6841-6850 ◽  
Author(s):  
Z Wang ◽  
R G Roeder

An in vitro system reconstituted with highly purified RNA polymerase III, TFIIIC2, and TFIIIB has been used to identify two chromatographically distinct human RNA polymerase III transcription factors, TFIIIC1 and TFIIIC1', which are functionally equivalent to the previously defined TFIIIC1 (S. T. Yoshinaga, P. A. Boulanger, and A. J. Berk, Proc. Natl. Acad. Sci. USA 84:3585-3589, 1987). Interactions between TFIIIC2, TFIIIC1 (or TFIIIC1'), and the VA1 and tRNA1(Met) templates have been investigated by DNase I footprint analysis. Homogeneous TFIIIC2 alone shows only a weak footprint over the B-box region of the VA1 and tRNA1(Met) templates, whereas TFIIIC1 (or TFIIIC1') alone shows both a strong interaction over the downstream termination region and a very weak interaction near the A-box region. Importantly, when both factors are present simultaneously, TFIIIC1 (or TFIIIC1') dramatically enhances the level of TFIIIC2 binding and extends the footprint to a region that includes the A box. The downstream termination region is essential for this cooperative interaction between TFIIIC2 and TFIIIC1 (or TFIIIC1') on the VA1 and tRNA1(Met) templates and plays a role in the overall accuracy and efficiency of RNA polymerase III transcription.


1999 ◽  
Vol 77 (5) ◽  
pp. 431-438 ◽  
Author(s):  
Jürgen Müller ◽  
Bernd-Joachim Benecke

Transcription of the human 7SL RNA gene by RNA polymerase III depends on the concerted action of transcription factors binding to the gene-internal and gene-external parts of its promoter. Here, we investigated which transcription factors interact with the human 7SL RNA gene promoter and which are required for transcription of the human 7SL RNA gene. A-box/B-box elements were previously identified in 5S RNA, tRNA, and virus associated RNA genes and are recognized by transcription factor IIIC (TFIIIC). The gene-internal promoter region of the human 7SL RNA gene shows only limited similarity to those elements. Nevertheless, competition experiments and the use of highly enriched factor preparations demonstrate that TFIIIC is required for human 7SL transcription. The gene-external part of the promoter includes an authentic cAMP-responsive element previously identified in various RNA polymerase II promoters. Here we demonstrate that members of the activating transcription factor/cyclic AMP-responsive element binding protein (ATF/CREB) transcription factor family bind specifically to this element in vitro. However, the human 7SL RNA gene is not regulated by cAMP in vivo. Furthermore, in vitro transcription of the gene does not depend on ATF/CREB transcription factors. It rather appears that a transcription factor with DNA-binding characteristics like ATF/CREB proteins but otherwise different properties is required for human 7SL RNA transcription.Key words: 7SL RNA, ATF, CRE, TFIIIC, RNA polymerase III.


1985 ◽  
Vol 5 (1) ◽  
pp. 40-45 ◽  
Author(s):  
A B Lassar ◽  
D H Hamer ◽  
R G Roeder

We have constructed recombinant simian virus 40 molecules containing Xenopus 5S RNA and tRNA genes. Recombinant minichromosomes containing these genes were isolated to study the interaction of RNA polymerase III transcription factors with these model chromatin templates. Minichromosomes containing a tRNAMet gene can be isolated in a stable complex with transcription factors (IIIB and IIIC) and are active in vitro templates for purified RNA polymerase III. In contrast, minichromosomes containing a 5S RNA gene are refractory to transcription by purified RNA polymerase III in either the absence or the presence of other factors.


Open Biology ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 170001 ◽  
Author(s):  
Ewa Leśniewska ◽  
Magdalena Boguta

RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.


1986 ◽  
Vol 6 (9) ◽  
pp. 3117-3127 ◽  
Author(s):  
M S Kasher ◽  
D Pintel ◽  
D C Ward

Plasmid DNA containing the adenovirus type 2 genes for VA RNA was linearized at a site distal to the gene, end labeled with a biotin-nucleotide analog of TTP, and incubated with avidin to form an avidin-biotinylated DNA complex. HeLa cell S100 extracts containing crude RNA polymerase III and transcription factors (TFs) IIIB and IIIC were programmed with the avidin-biotin-VA DNA to allow stable complex formation (A.B. Lassar, P.L. Martin, and R.G. Roeder, Science 222:740-748, 1983). Chromatography of the programmed extract over a biotin-cellulose affinity resin resulted in the selective, and virtually quantitative, retention of one of two stable preinitiation complexes, either VA-IIIC or VA-IIIC-IIIB, depending on the length of template incubation in the S100 extract. After washing the resin with 0.10 M and 0.25 M KCl to remove RNA polymerase III and nonspecifically bound proteins, respectively, TFIIIC was eluted from the VA-IIIC complex by the addition of 1.5 M KCl. The VA-IIIC-IIIB complex exhibited a higher salt stability. Most of TFIIIB and some TFIIIC were released by the addition of 1.5 M KCl; however, the majority of TFIIIC activity was recovered only after a subsequent 3.0 M KCl elution. The specific activity of the TFIIIC in the 3.0 M KCl fraction was 770-fold higher than that in the S100 extract, while the protein content of the 1.5 and 3.0 M KCl fractions was reduced 7,500- and 100,000-fold, respectively.


1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887 ◽  
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


Sign in / Sign up

Export Citation Format

Share Document