Analysis of transcription factors binding to the human 7SL RNA gene promoter

1999 ◽  
Vol 77 (5) ◽  
pp. 431-438 ◽  
Author(s):  
Jürgen Müller ◽  
Bernd-Joachim Benecke

Transcription of the human 7SL RNA gene by RNA polymerase III depends on the concerted action of transcription factors binding to the gene-internal and gene-external parts of its promoter. Here, we investigated which transcription factors interact with the human 7SL RNA gene promoter and which are required for transcription of the human 7SL RNA gene. A-box/B-box elements were previously identified in 5S RNA, tRNA, and virus associated RNA genes and are recognized by transcription factor IIIC (TFIIIC). The gene-internal promoter region of the human 7SL RNA gene shows only limited similarity to those elements. Nevertheless, competition experiments and the use of highly enriched factor preparations demonstrate that TFIIIC is required for human 7SL transcription. The gene-external part of the promoter includes an authentic cAMP-responsive element previously identified in various RNA polymerase II promoters. Here we demonstrate that members of the activating transcription factor/cyclic AMP-responsive element binding protein (ATF/CREB) transcription factor family bind specifically to this element in vitro. However, the human 7SL RNA gene is not regulated by cAMP in vivo. Furthermore, in vitro transcription of the gene does not depend on ATF/CREB transcription factors. It rather appears that a transcription factor with DNA-binding characteristics like ATF/CREB proteins but otherwise different properties is required for human 7SL RNA transcription.Key words: 7SL RNA, ATF, CRE, TFIIIC, RNA polymerase III.

1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887 ◽  
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


1994 ◽  
Vol 14 (9) ◽  
pp. 6164-6170
Author(s):  
P P Sadhale ◽  
N A Woychik

We identified a partially sequenced Saccharomyces cerevisiae gene which encodes a protein related to the S. cerevisiae RNA polymerase II subunit, RPB7. Several lines of evidence suggest that this related gene, YKL1, encodes the RNA polymerase III subunit C25. C25, like RPB7, is present in submolar ratios, easily dissociates from the enzyme, is essential for cell growth and viability, but is not required in certain transcription assays in vitro. YKL1 has ABF-1 and PAC upstream sequences often present in RNA polymerase subunit genes. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of the YKL1 gene product is equivalent to that of the RNA polymerase III subunit C25. Finally, a C25 conditional mutant grown at the nonpermissive temperature synthesizes tRNA at reduced rates relative to 5.8S rRNA, a hallmark of all characterized RNA polymerase III mutants.


1996 ◽  
Vol 16 (12) ◽  
pp. 6841-6850 ◽  
Author(s):  
Z Wang ◽  
R G Roeder

An in vitro system reconstituted with highly purified RNA polymerase III, TFIIIC2, and TFIIIB has been used to identify two chromatographically distinct human RNA polymerase III transcription factors, TFIIIC1 and TFIIIC1', which are functionally equivalent to the previously defined TFIIIC1 (S. T. Yoshinaga, P. A. Boulanger, and A. J. Berk, Proc. Natl. Acad. Sci. USA 84:3585-3589, 1987). Interactions between TFIIIC2, TFIIIC1 (or TFIIIC1'), and the VA1 and tRNA1(Met) templates have been investigated by DNase I footprint analysis. Homogeneous TFIIIC2 alone shows only a weak footprint over the B-box region of the VA1 and tRNA1(Met) templates, whereas TFIIIC1 (or TFIIIC1') alone shows both a strong interaction over the downstream termination region and a very weak interaction near the A-box region. Importantly, when both factors are present simultaneously, TFIIIC1 (or TFIIIC1') dramatically enhances the level of TFIIIC2 binding and extends the footprint to a region that includes the A box. The downstream termination region is essential for this cooperative interaction between TFIIIC2 and TFIIIC1 (or TFIIIC1') on the VA1 and tRNA1(Met) templates and plays a role in the overall accuracy and efficiency of RNA polymerase III transcription.


1985 ◽  
Vol 5 (1) ◽  
pp. 40-45 ◽  
Author(s):  
A B Lassar ◽  
D H Hamer ◽  
R G Roeder

We have constructed recombinant simian virus 40 molecules containing Xenopus 5S RNA and tRNA genes. Recombinant minichromosomes containing these genes were isolated to study the interaction of RNA polymerase III transcription factors with these model chromatin templates. Minichromosomes containing a tRNAMet gene can be isolated in a stable complex with transcription factors (IIIB and IIIC) and are active in vitro templates for purified RNA polymerase III. In contrast, minichromosomes containing a 5S RNA gene are refractory to transcription by purified RNA polymerase III in either the absence or the presence of other factors.


2023 ◽  
Vol 83 ◽  
Author(s):  
S. U. Rehman ◽  
K. Muhammad ◽  
E. Novaes ◽  
Y. Que ◽  
A. Din ◽  
...  

Abstract Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.


1992 ◽  
Vol 12 (7) ◽  
pp. 3247-3261
Author(s):  
S Murphy ◽  
J B Yoon ◽  
T Gerster ◽  
R G Roeder

The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies have indicated that the PSE and octamer elements work cooperatively. The present study has identified and characterized a novel transcription factor (designated PTF) which specifically binds to the PSE sequence of both RNA polymerase II- and RNA polymerase III-transcribed snRNA genes. PTF binding is markedly potentiated by Oct binding to an adjacent octamer site. This potentiation is effected by Oct-1, Oct-2, or the conserved POU domain of these factors. In agreement with these results and despite the independent binding of Octs to the promoter, PTF and Oct-1 enhance transcription from the 7SK promoter in an interdependent manner. Moreover, the POU domain of Oct-1 is sufficient for significant in vitro activity in the presence of PTF. These results suggest that essential activation domains reside in PTF and that the potentiation of PTF binding by Octs plays a key role in the function of octamer-containing snRNA gene enhancers.


Sign in / Sign up

Export Citation Format

Share Document