scholarly journals The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae

2008 ◽  
Vol 105 (30) ◽  
pp. 10326-10331 ◽  
Author(s):  
Z. Chen ◽  
C. Speck ◽  
P. Wendel ◽  
C. Tang ◽  
B. Stillman ◽  
...  
Nature ◽  
2018 ◽  
Vol 559 (7713) ◽  
pp. 217-222 ◽  
Author(s):  
Ningning Li ◽  
Wai Hei Lam ◽  
Yuanliang Zhai ◽  
Jiaxuan Cheng ◽  
Erchao Cheng ◽  
...  

2011 ◽  
Vol 31 (5) ◽  
pp. 353-361 ◽  
Author(s):  
Hui-Peng Yang ◽  
Su-Juan Luo ◽  
Yi-Nü Li ◽  
Yao-Zhou Zhang ◽  
Zhi-Fang Zhang

The ORC (origin recognition complex) binds to the DNA replication origin and recruits other replication factors to form the pre-replication complex. The cDNA and genomic sequences of all six subunits of ORC in Bombyx mori (BmORC1–6) were determined by RACE (rapid amplification of cDNA ends) and bioinformatic analysis. The conserved domains were identified in BmOrc1p–6p and the C-terminal of BmOrc6p features a short sequence that may be specific for Lepidoptera. As in other organisms, each of the six BmORC subunits had evolved individually from ancestral genes in early eukaryotes. During embryo development, the six genes were co-regulated, but different ratios of the abundance of mRNAs were observed in 13 tissues of the fifth instar day-6 larvae. Infection by BmNPV (B. mori nucleopolyhedrovirus) initially decreased and then increased the abundance of BmORC. We suggest that some of the BmOrc proteins may have additional functions and that BmOrc proteins participate in the replication of BmNPV.


2001 ◽  
Vol 21 (8) ◽  
pp. 2790-2801 ◽  
Author(s):  
James F. Theis ◽  
Carol S. Newlon

ABSTRACT While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins inSaccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.


2020 ◽  
Vol 48 (19) ◽  
pp. 11146-11161
Author(s):  
Naining Xu ◽  
Yingying You ◽  
Changdong Liu ◽  
Maxim Balasov ◽  
Lee Tung Lun ◽  
...  

Abstract The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.


1999 ◽  
Vol 112 (12) ◽  
pp. 2011-2018 ◽  
Author(s):  
A. Rowles ◽  
S. Tada ◽  
J.J. Blow

During late mitosis and early G1, a series of proteins are assembled onto replication origins that results in them becoming ‘licensed’ for replication in the subsequent S phase. In Xenopus this first involves the assembly onto chromatin of the Xenopus origin recognition complex XORC, and then XCdc6, and finally the RLF-M component of the replication licensing system. In this paper we examine changes in the way that XORC associates with chromatin in the Xenopus cell-free system as origins become licensed. Restricting the quantity of XORC on chromatin reduced the extent of replication as expected if a single molecule of XORC is sufficient to specify a single replication origin. During metaphase, XOrc1 associated only weakly with chromatin. In early interphase, XOrc1 formed a strong complex with chromatin, as evidenced by its resistance to elution by 200 mM salt, and this state persisted when XCdc6 was assembled onto the chromatin. As a consequence of origins becoming licensed the association of XOrc1 and XCdc6 with chromatin was destabilised, and XOrc1 became susceptible to removal from chromatin by exposure to either high salt or high Cdk levels. At this stage the essential function for XORC and XCdc6 in DNA replication had already been fulfilled. Since high Cdk levels are required for the initiation of DNA replication, this ‘licensing-dependent origin inactivation’ may contribute to mechanisms that prevent re-licensing of replication origins once S phase has started.


Science ◽  
2007 ◽  
Vol 317 (5842) ◽  
pp. 1213-1216 ◽  
Author(s):  
M. Gaudier ◽  
B. S. Schuwirth ◽  
S. L. Westcott ◽  
D. B. Wigley

Sign in / Sign up

Export Citation Format

Share Document