origin recognition
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 31)

H-INDEX

62
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yun-bo Deng ◽  
Juan Chen ◽  
Xian-yu Luo ◽  
Tian Zeng ◽  
Dong-mei Ye ◽  
...  

Abstract Background: Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5 and ORC6, form a replication-initiator complex to mediate DNA replication, which play a key role in carcinogenesis, while their role in lung adenocarcinomas (LUAD) remains poorly understood.Methods: We confirmed the transcriptional and post-transcriptional levels, DNA alteration, DNA methylation, miRNA network, protein structure, PPI network, functional enrichment, immune infiltration and prognostic value of ORCs in LUAD based on Oncomine, GEPIA, HPA, cBioportal, TCGA, GeneMANIA, Metascape, KM-plot, GENT2, and TIMER database. Results: ORC mRNA and protein were both enhanced obviously based on Oncomine, Ualcan, GEPIA, TCGA and HPA database. Furthermore, ORC1 and ORC6 have significant prognostic values for LUAD patients based on GEPIA database. Protein structure, PPI network, functional enrichment and immune infiltration analysis indicated that ORC complex cooperatively accelerate the LUAD development by promoting DNA replication, cellular senescence and metabolic process. Conclusion: the ORC complex has an important prognostic and expression significance for LUAD patients.


2021 ◽  
Author(s):  
Juan Chen ◽  
Juan Zou ◽  
Juan Zeng ◽  
Tian Zeng ◽  
Qi-hao Hu ◽  
...  

Abstract Background: Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5 and ORC6, form a replication-initiator complex to mediate DNA replication, which play a key role in carcinogenesis, while their role in lung adenocarcinomas (LUAD) remains poorly understood.Methods: We confirmed the transcriptional and post-transcriptional levels, DNA alteration, DNA methylation, miRNA network, protein structure, PPI network, functional enrichment, immune infiltration and prognostic value of ORCs in LUAD based on Oncomine, GEPIA, HPA, cBioportal, TCGA, GeneMANIA, Metascape, KM-plot, GENT2, and TIMER database. Results: ORC mRNA and protein were both enhanced obviously based on Oncomine, Ualcan, GEPIA, TCGA and HPA database. Furthermore, ORC1 and ORC6 have significant prognostic values for LUAD patients based on GEPIA database. Protein structure, PPI network, functional enrichment and immune infiltration analysis indicated that ORC complex cooperatively accelerate the LUAD development by promoting DNA replication, cellular senescence and metabolic process. Conclusion: the ORC complex has an important prognostic and expression significance for LUAD patients.


2021 ◽  
Vol 22 (7) ◽  
pp. 3481
Author(s):  
Afaf Eladl ◽  
Yudai Yamaoki ◽  
Shoko Hoshina ◽  
Haruka Horinouchi ◽  
Keiko Kondo ◽  
...  

Origin recognition complex (ORC) binds to replication origins in eukaryotic DNAs and plays an important role in replication. Although yeast ORC is known to sequence-specifically bind to a replication origin, how human ORC recognizes a replication origin remains unknown. Previous genome-wide studies revealed that guanine (G)-rich sequences, potentially forming G-quadruplex (G4) structures, are present in most replication origins in human cells. We previously suggested that the region comprising residues 413–511 of human ORC subunit 1, hORC1413–511, binds preferentially to G-rich DNAs, which form a G4 structure in the absence of hORC1413–511. Here, we investigated the interaction of hORC1413-511 with various G-rich DNAs derived from human c-myc promoter and telomere regions. Fluorescence anisotropy revealed that hORC1413–511 binds preferentially to DNAs that have G4 structures over ones having double-stranded structures. Importantly, circular dichroism (CD) and nuclear magnetic resonance (NMR) showed that those G-rich DNAs retain the G4 structures even after binding with hORC1413–511. NMR chemical shift perturbation analyses revealed that the external G-tetrad planes of the G4 structures are the primary binding sites for hORC1413–511. The present study suggests that human ORC1 may recognize replication origins through the G4 structure.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Humberto Sánchez ◽  
Kaley McCluskey ◽  
Theo van Laar ◽  
Edo van Veen ◽  
Filip M. Asscher ◽  
...  

AbstractDNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase. Although the outline of replisome assembly is understood, little is known about the dynamics of individual proteins on DNA and how these contribute to proper complex formation. Here we show, using single-molecule optical trapping and confocal microscopy, that yeast ORC is a mobile protein that diffuses rapidly along DNA. Origin recognition halts this search process. Recruitment of MCM molecules in an ORC- and Cdc6-dependent fashion results in slow-moving ORC-MCM intermediates and MCMs that rapidly scan the DNA. Following ATP hydrolysis, salt-stable loading of MCM single and double hexamers was seen, both of which exhibit salt-dependent mobility. Our results demonstrate that effective helicase loading relies on an interplay between protein diffusion and origin recognition, and suggest that MCM is stably loaded onto DNA in multiple forms.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hsiang-Chen Chou ◽  
Kuhulika Bhalla ◽  
Osama EL Demerdesh ◽  
Olaf Klingbeil ◽  
Kaarina Hanington ◽  
...  

The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clare S. K. Lee ◽  
Ming Fung Cheung ◽  
Jinsen Li ◽  
Yongqian Zhao ◽  
Wai Hei Lam ◽  
...  

AbstractThe Origin Recognition Complex (ORC) is an evolutionarily conserved six-subunit protein complex that binds specific sites at many locations to coordinately replicate the entire eukaryote genome. Though highly conserved in structure, ORC’s selectivity for replication origins has diverged tremendously between yeasts and humans to adapt to vastly different life cycles. In this work, we demonstrate that the selectivity determinant of ORC for DNA binding lies in a 19-amino acid insertion helix in the Orc4 subunit, which is present in yeast but absent in human. Removal of this motif from Orc4 transforms the yeast ORC, which selects origins based on base-specific binding at defined locations, into one whose selectivity is dictated by chromatin landscape and afforded with plasticity, as reported for human. Notably, the altered yeast ORC has acquired an affinity for regions near transcriptional start sites (TSSs), which the human ORC also favors.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jiaxuan Cheng ◽  
Ningning Li ◽  
Xiaohan Wang ◽  
Jiazhi Hu ◽  
Yuanliang Zhai ◽  
...  

AbstractThe function of the origin recognition complex (ORC) in DNA replication is highly conserved in recognizing and marking the initiation sites. The detailed molecular mechanisms by which human ORC is reconfigured into a state competent for origin association remain largely unknown. Here, we present structural characterizations of human ORC1–5 and ORC2–5 assemblies. ORC2–5 exhibits a tightly autoinhibited conformation with the winged-helix domain of ORC2 completely blocking the central DNA-binding channel. The binding of ORC1 partially relieves the autoinhibitory effect of ORC2–5 through remodeling ORC2-WHD, which makes ORC2-WHD away from the central channel creating a still autoinhibited but more dynamic structure. In particular, the AAA+ domain of ORC1 is highly flexible to sample a variety of conformations from inactive to potentially active states. These results provide insights into the detailed mechanisms regulating the autoinhibition of human ORC and its subsequent activation for DNA binding.


2020 ◽  
Vol 48 (19) ◽  
pp. 11146-11161
Author(s):  
Naining Xu ◽  
Yingying You ◽  
Changdong Liu ◽  
Maxim Balasov ◽  
Lee Tung Lun ◽  
...  

Abstract The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.


Sign in / Sign up

Export Citation Format

Share Document