scholarly journals On the stability of the Atlantic meridional overturning circulation

2009 ◽  
Vol 106 (49) ◽  
pp. 20584-20589 ◽  
Author(s):  
M. Hofmann ◽  
S. Rahmstorf
2013 ◽  
Vol 26 (6) ◽  
pp. 1926-1938 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu

Abstract A diagnostic indicator ΔMov is proposed in this paper to monitor the stability of the Atlantic meridional overturning circulation (AMOC). The ΔMov is a diagnostic for a basinwide salt-advection feedback and defined as the difference between the freshwater transport induced by the AMOC across the southern border of the Atlantic Ocean and the overturning liquid freshwater transport from the Arctic Ocean to the North Atlantic. As validated in the Community Climate System Model, version 3 (CCSM3), for an AMOC in the conveyor state, a positive ΔMov (freshwater convergence) in the Atlantic basin indicates a monostable AMOC and a negative ΔMov (freshwater divergence) indicates a bistable AMOC. Based on ΔMov, the authors investigate the AMOC stability in the Last Glacial Maximum (LGM) and analyze the modulation of the AMOC stability by an open/closed Bering Strait. Moreover, the authors estimate that the real AMOC is likely to be bistable in the present day, since some observations suggest a negative ΔMov (freshwater divergence) is currently in the Atlantic basin. However, this estimation is very sensitive to the choice of the observational data.


2014 ◽  
Vol 27 (2) ◽  
pp. 969-975 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu

Abstract This study examines the validity of the net freshwater transport ΔMov as a stability indicator of the Atlantic meridional overturning circulation (AMOC) in a low-resolution version of the NCAR Community Climate System Model, version 3 (CCSM3). It is shown that the sign of ΔMov indicates the monostability or bistability of the AMOC, which is based on a hypothesis that a collapsed AMOC induces a zero net freshwater transport. In CCSM3, this hypothesis is satisfied in that the collapsed AMOC, with a nonzero strength, induces a zero net freshwater transport ΔMov across the Atlantic basin by generating equivalent freshwater export MovS and freshwater import MovN at the southern and northern boundaries, respectively. Because of the satisfaction of the hypothesis, ΔMov is consistent with a generalized indicator L for a slowly evolving AMOC, both of which correctly monitor the AMOC stability.


2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


Sign in / Sign up

Export Citation Format

Share Document