scholarly journals A family of RRM-type RNA-binding proteins specific to plant mitochondria

2002 ◽  
Vol 99 (9) ◽  
pp. 5866-5871 ◽  
Author(s):  
M. Vermel ◽  
B. Guermann ◽  
L. Delage ◽  
J.-M. Grienenberger ◽  
L. Marechal-Drouard ◽  
...  
2016 ◽  
Author(s):  
Oren Ostersetzer-Biran ◽  
Jeffrey Mower

Abstract Mitochondria are the site of respiration and numerous other metabolic processes required for plant growth and development. Increased demands for metabolic energy are observed during different stages in the plants life cycle, but are particularly ample during germination and reproductive organ development. These activities are dependent upon the tight regulation of the expression and accumulation of various organellar proteins. Plant mitochondria contain their own genomes (mtDNA), which encode for rRNAs, tRNAs and some mitochondrial proteins. Although all mitochondria have probably evolved from a common alpha-proteobacterial ancestor, notable genomic reorganizations have occurred in the mtDNAs of different eukaryotic lineages. Plant mtDNAs are notably larger and more variable in size (ranging from 70~11,000 kbp in size) than the mrDNAs in higher animals (16~19 kbp). Another unique feature of plant mitochondria includes the presence of both circular and linear DNA fragments, which undergo intra- and intermolecular recombination. DNA-seq data indicate that such recombination events result with diverged mitochondrial genome configurations, even within a single plant species. One common plant phenotype that emerges as a consequence of altered mtDNA configuration is cytoplasmic male sterility CMS (i.e. reduced production of functional pollen). The maternally-inherited male sterility phenotype is highly valuable agriculturally. CMS forces the production of F1 hybrids, particularly in predominantly self-pollinating crops, resulting in enhanced crop growth and productivity through heterosis (i.e. hybrid vigor or outbreeding enhancement). CMS lines have been implemented in some cereal and vegetables, but most crops still lack a CMS system. This work focuses on the analysis of the molecular basis of CMS. We also aim to induce nuclear or organellar induced male-sterility in plants, and to develop a novel approach for fertility restoration. Our work focuses on Brassicaceae, a large family of flowering plants that includes Arabidopsis thaliana, a key model organism in plant sciences, as well as many crops of major economic importance (e.g., broccoli, cauliflower, cabbage, and various seeds for oil production). In spite of the genomic rearrangements in the mtDNAs of plants, the number of genes and the coding sequences are conserved among different mtDNAs in angiosperms (i.e. ~60 genes encoding different tRNAs, rRNAs, ribosomal proteins and subunits of the respiratory system). Yet, in addition to the known genes, plant mtDNAs also harbor numerous ORFs, most of which are not conserved among species and are currently of unknown function. Remarkably, and relevant to our study, CMS in plants is primarily associated with the expression of novel chimericORFs, which likely derive from recombination events within the mtDNAs. Whereas the CMS loci are localized to the mtDNAs, the factors that restore fertility (Rfs) are identified as nuclear-encoded RNA-binding proteins. Interestingly, nearly all of the Rf’s are identified as pentatricopeptide repeat (PPR) proteins, a large family of modular RNA-binding proteins that mediate several aspects of gene expression primarily in plant organelles. In this project we proposed to develop a system to test the ability of mtORFs in plants, which are closely related to known CMS factors. We will induce male fertility in various species of Brassicaceae, and test whether a down-relation in the expression of the recombinantCMS-genes restores fertility, using synthetically designed PPR proteins. 


Sign in / Sign up

Export Citation Format

Share Document