type iii effector
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 37)

H-INDEX

58
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Bruna Alicia Rafael Paiva ◽  
Adriane Wendland ◽  
Maurício Rossato ◽  
Marisa A. da S. Ferreira

2021 ◽  
Author(s):  
Geun Cheol Song ◽  
Je‐Seung Jeon ◽  
Hye Kyung Choi ◽  
Hee‐Jung Sim ◽  
Sang‐Gyu Kim ◽  
...  

2021 ◽  
Author(s):  
Pongdet Piromyou ◽  
Pongpan Songwattana ◽  
Pakpoom Boonchuen ◽  
Hien P. Nguyen ◽  
Monchai Manassila ◽  
...  

Abstract Bradyrhizobium sp. DOA9 can nodulate a wide spectrum of legumes; however, unlike other bradyrhizobia, DOA9 carries a symbiotic plasmid harboring type III secretion system (T3SS) and several effector (T3E) genes, one of which encodes a new putative type III effector—SkP48. Here, we demonstrated the pivotal roles of SkP48 from Bradyrhizobium sp. DOA9 in inhibiting nodulation of various Vigna species and Crotalaria juncea and suppressing nodulation efficiency of Arachis hypogea. By contrast, the nodulation efficiency of a SkP48 mutant did not differ significantly with the DOA9 wild-type strain on Macroptilium atropurpureum and Stylosanthes hamata. An evolutionary analysis revealed that the SkP48 effector which contains a shikimate kinase and a SUMO protease (C48 cysteine peptidase) domain is distinct from the others effectors previously identified in others bradyrhizobia and pathogenic bacteria. Our findings suggest that the new putative T3E SkP48 is a key factor suppressing nodulation and nodule organogenesis in several legumes by activation of effector-triggered immunity through salicylic acid biosynthesis induction, which is deleterious to rhizobial infection. In addition, nodulation may be modulated by the function of defensins involved in jasmonic acid signalling in V. radiata SUT1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Safirah Tasa Nerves Ratu ◽  
Atsushi Hirata ◽  
Christian Oliver Kalaw ◽  
Michiko Yasuda ◽  
Mitsuaki Tabuchi ◽  
...  

Bradyrhizobium elkanii utilizes the type III effector Bel2-5 for nodulation in host plants in the absence of Nod factors (NFs). In soybean plants carrying the Rj4 allele, however, Bel2-5 causes restriction of nodulation by triggering immune responses. Bel2-5 shows similarity with XopD of the phytopathogen Xanthomonas campestris pv. vesicatoria and possesses two internal repeat sequences, two ethylene (ET)-responsive element-binding factor-associated amphiphilic repression (EAR) motifs, a nuclear localization signal (NLS), and a ubiquitin-like protease (ULP) domain, which are all conserved in XopD except for the repeat domains. By mutational analysis, we revealed that most of the putative domains/motifs in Bel2-5 were essential for both NF-independent nodulation and nodulation restriction in Rj4 soybean. The expression of soybean symbiosis- and defense-related genes was also significantly altered by inoculation with the bel2-5 domain/motif mutants compared with the expression upon inoculation with wild-type B. elkanii, which was mostly consistent with the phenotypic changes of nodulation in host plants. Notably, the functionality of Bel2-5 was mostly correlated with the growth inhibition effect of Bel2-5 expressed in yeast cells. The nodulation phenotypes of the domain-swapped mutants of Bel2-5 and XopD indicated that both the C-terminal ULP domain and upstream region are required for the Bel2-5-dependent nodulation phenotypes. These results suggest that Bel2-5 interacts with and modifies host targets via these multiple domains to execute both NF-independent symbiosis and nodulation restriction in Rj4 soybean.


Author(s):  
Leang-Chung Choh ◽  
Guang-Han Ong ◽  
Eng-Guan Chua ◽  
Kumutha Malar Vellasamy ◽  
Vanitha Mariappan ◽  
...  

2021 ◽  
Author(s):  
Margot Raffeiner ◽  
Suayib Üstün ◽  
Tiziana Guerra ◽  
Daniela Spinti ◽  
Maria Fitzner ◽  
...  

A critical component of plant immunity against invading pathogens is the rapid transcriptional reprogramming of the attacked cell to minimize virulence. Many adapted plant bacterial pathogens use type III effector (T3E) proteins to interfere with plant defense responses, including the induction of immunity genes. The elucidation of effector function is essential to understanding bacterial pathogenesis. Here, we show that XopS, a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits the proteasomal degradation of the transcriptional regulator of defense gene expression WRKY40. Virus-induced gene silencing of WRKY40 in pepper enhanced plant tolerance towards Xcv infection, indicating it represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets including salicylic acid (SA)-responsive genes and the jasmonic acid (JA) signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis or Nicotiana benthamiana prevented stomatal closure in response to bacteria and biotic elicitors in a WRKY40 dependent manner. This suggests that XopS interferes with preinvasion as well as with apoplastic defense by manipulating WRKY40 stability and gene expression eventually altering phytohormone crosstalk to promote pathogen proliferation.


2021 ◽  
Author(s):  
Matthew D. Romero ◽  
Carabeo A. Carabeo

The obligate intracellular pathogen Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. This actin remodeling event exhibits relatively rapid dynamics that, through quantitative live-cell imaging, was revealed to consist of three phases – a fast recruitment phase which abruptly transitions to a fast turnover phase before resolving into a slow turnover of actin that indicates the end of actin remodeling. Here, we investigate Chlamydia invasion in the context of actin dynamics. Efficient invasion is associated with robust actin remodeling kinetics that results from a collaborative functional interaction between two different classes of actin nucleators – formins, including formin 1 and the diaphanous-related formins mDia1 and mDia2, and the Arp2/3 complex. Recruitment of these nucleators requires the presence of the chlamydial type III effector TarP, which enables the respective nucleating activities of formin and Arp2/3 to collaboratively generate a robust actin network. A collaborative model is supported by the observation that co-inhibition of Fmm1 and Arp2/3 further reduced both actin dynamics and invasion efficiency than either treatment alone. Furthermore, inhibition of recruitment of Fmn1 and/or Arp2/3 by deleting TarP was sufficient to similarly attenuated actin kinetics and invasion efficiency, supporting a model wherein TarP is the major contributor to robust actin remodeling via its recruitment of the two classes of actin nucleators. At the population level, the kinetics of recruitment and turnover of actin and its nucleators were linked. However, a more detailed analysis of the data at the level of individual elementary bodies showed significant variation and a lack of correlation between the kinetics of recruitment and turnover, suggesting that accessory factors variably modify actin kinetics at individual entry sites. In summary, efficient chlamydial invasion requires a specific profile of actin dynamics which are coordinated by TarP-dependent recruitment of two classes of actin nucleators.


2021 ◽  
Author(s):  
Jia Xuan Leong ◽  
Margot Raffeiner ◽  
Daniela Spinti ◽  
Gautier Langin ◽  
Mirita Franz-Wachtel ◽  
...  

AbstractBeyond its role in cellular homeostasis, autophagy is considered to play anti- and pro-microbial roles in host-microbe interactions, both in animals and plants. One of the prominent roles of anti-microbial autophagy in animals is to degrade intracellular pathogens or microbial molecules, in a process termed “xenophagy”. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. However, the extent to which xenophagy contributes to plant-bacteria interactions remains unknown. Here, we provide evidence that NBR1/Joka2-dependent selective autophagy functions in plant defence by degrading the bacterial type-III effector (T3E) XopL from Xanthomonas campestris pv. vesicatoria (Xcv). We show how XopL associates with the autophagy machinery and undergoes self-ubiquitination, subsequently triggering its own degradation by NBR1/Joka2-mediated selective autophagy. Intriguingly, Xcv is also able to suppress autophagy in a T3E-dependent manner by utilizing the same T3E XopL that interacts and degrades the autophagy component SH3P2 via its E3 ligase activity. Thus, XopL is able to escape its own degradation and promote pathogenicity of Xcv by inhibiting autophagy through SH3P2 depletion. Together, we reveal a novel phenomenon how NBR1/Joka2 contributes to anti-bacterial autophagy and provide a unique mechanism how a T3E undergoes self-modification to act as a bait to trap host cellular degradation machineries.Significant statementAutophagy has anti- and pro-microbial roles in host-microbe interactions. Its anti-microbial role is derived from its ability to degrade intracellular pathogens, termed “xenophagy”. The contribution of xenophagy to host-bacteria interactions in plants and its substrates remains elusive. Here, we reveal that NEIGHBOR OF BRCA1 (NBR1)-mediated autophagy has an anti-microbial role towards bacteria by degrading the type-III effector (T3E) XopL from Xanthomonas campestris pv. vesicatoria (Xcv). We unveil that the same T3E is able to perturb autophagy to escape its own degradation and to boost bacterial virulence. These findings highlight a novel role of xenophagy that is conserved across kingdoms and we offer new perspectives on how T3Es undergo self-modification to trap host cellular degradation pathways.


2021 ◽  
Vol 72 (9) ◽  
pp. 3395-3409
Author(s):  
Brian C Mooney ◽  
Melissa Mantz ◽  
Emmanuelle Graciet ◽  
Pitter F Huesgen

Abstract Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host’s innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host’s immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation that remains is the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases and compare their functions with those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.


Sign in / Sign up

Export Citation Format

Share Document