scholarly journals Blood flow and oxygen delivery to human brain during functional activity: Theoretical modeling and experimental data

2001 ◽  
Vol 98 (12) ◽  
pp. 6859-6864 ◽  
Author(s):  
M. A. Mintun ◽  
B. N. Lundstrom ◽  
A. Z. Snyder ◽  
A. G. Vlassenko ◽  
G. L. Shulman ◽  
...  
1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


1982 ◽  
Vol 242 (5) ◽  
pp. H805-H809 ◽  
Author(s):  
G. R. Heyndrickx ◽  
P. Muylaert ◽  
J. L. Pannier

alpha-Adrenergic control of the oxygen delivery to the myocardium during exercise was investigated in eight conscious dogs instrumented for chronic measurements of coronary blood flow, left ventricular (LV) pressure, aortic blood pressure, and heart rate and sampling of arterial and coronary sinus blood. After alpha-adrenergic receptor blockade a standard exercise load elicited a significantly greater increase in heart rate, rate of change of LV pressure (LV dP/dt), LV dP/dt/P, and coronary blood flow than was elicited in the unblocked state. In contrast to the response pattern during control exercise, there was no significant change in coronary sinus oxygen tension (PO2), myocardial arteriovenous oxygen difference, and myocardial oxygen delivery-to-oxygen consumption ratio. It is concluded that the normal relationship between myocardial oxygen supply and oxygen demand is modified during exercise after alpha-adrenergic blockade, whereby oxygen delivery is better matched to oxygen consumption. These results indicate that the increase in coronary blood flow and oxygen delivery to the myocardium during normal exercise is limited by alpha-adrenergic vasoconstriction.


Shock ◽  
2004 ◽  
Vol 21 ◽  
pp. 3-4
Author(s):  
M. A. Choudhry ◽  
Z. F. Ba ◽  
S. Rana ◽  
I. H. Chaudry

1997 ◽  
Vol 272 (5) ◽  
pp. H2107-H2114 ◽  
Author(s):  
D. C. Poole ◽  
T. I. Musch ◽  
C. A. Kindig

As muscles are stretched, blood flow and oxygen delivery are compromised, and consequently muscle function is impaired. We tested the hypothesis that the structural microvascular sequellae associated with muscle extension in vivo would impair capillary red blood cell hemodynamics. We developed an intravital spinotrapezius preparation that facilitated direct on-line measurement and alteration of sarcomere length simultaneously with determination of capillary geometry and red blood cell flow dynamics. The range of spinotrapezius sarcomere lengths achievable in vivo was 2.17 +/- 0.05 to 3.13 +/- 0.11 microns. Capillary tortuosity decreased systematically with increases of sarcomere length up to 2.6 microns, at which point most capillaries appeared to be highly oriented along the fiber longitudinal axis. Further increases in sarcomere length above this value reduced mean capillary diameter from 5.61 +/- 0.03 microns at 2.4-2.6 microns sarcomere length to 4.12 +/- 0.05 microns at 3.2-3.4 microns sarcomere length. Over the range of physiological sarcomere lengths, bulk blood flow (radioactive microspheres) decreased approximately 40% from 24.3 +/- 7.5 to 14.5 +/- 4.6 ml.100 g-1.min-1. The proportion of continuously perfused capillaries, i.e., those with continuous flow throughout the 60-s observation period, decreased from 95.9 +/- 0.6% at the shortest sarcomere lengths to 56.5 +/- 0.7% at the longest sarcomere lengths and was correlated significantly with the reduced capillary diameter (r = 0.711, P < 0.01; n = 18). We conclude that alterations in capillary geometry and luminal diameter consequent to increased muscle sarcomere length are associated with a reduction in mean capillary red blood cell velocity and a greater proportion of capillaries in which red blood cell flow is stopped or intermittent. Thus not only does muscle stretching reduce bulk blood (and oxygen) delivery, it also alters capillary red blood cell flow dynamics, which may further impair blood-tissue oxygen exchange.


Sign in / Sign up

Export Citation Format

Share Document