Excess oxygen delivery during muscle contractions in spontaneously hypertensive rats

1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.

1995 ◽  
Vol 78 (1) ◽  
pp. 93-100 ◽  
Author(s):  
J. M. Lash

During contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR), arteriolar dilation is of normal magnitude but tissue PO2 is significantly depressed relative to normotensive [Wistar-Kyoto (WKY)] rats. This study examined the possibility that this low PO2 results from suppressed dilation of the upstream arterial feed vessels and a limitation of muscle blood flow. Contraction-induced changes in vascular resistances (R) and conductances (G) were calculated for upstream (Rup, Gup), microvascular (Rst, Gst), and downstream (Rdown, Gdown) vascular segments from measurements of pressure and flow in the rostral feed artery and vein. Feed arteries were smaller in SHR than in WKY rats at rest and after contractions (rest, 63.0 +/- 2.6 vs. 86.0 +/- 4.8 microns; 2 Hz 84.0 +/- 4.5 vs. 111.0 +/- 7.3 microns; 8 Hz, 130.0 +/- 5.9 vs. 144.0 +/- 7.1 microns). However, relative increases [times control (xCT)] in diameter and flow were greater in SHR (8 Hz diam, 2.080 +/- 0.072 vs. 1.690 +/- 0.042 xCT; 8 Hz flow, 15.700 +/- 2.057 vs. 8.170 +/- 0.752 xCT). In both groups, Rup and Rst decreased 60–70 and 85–90% after 2- and 8-Hz contractions, respectively. However, segmental vascular conductances increased more in SHR than in WKY rats (8 Hz: Gup, 18.50 +/- 3.76 vs. 8.00 +/- 1.26 xCT; Gst, 19.90 +/- 3.73 vs. 10.10 +/- 0.96 xCT; Gdown, 8.80 +/- 1.70 vs. 5.50 +/- 0.88 xCT). Therefore, upstream arterial dilation is not suppressed during muscle contractions in SHR, and deficits in muscle blood flow and oxygen delivery cannot account for the abnormally low tissue PO2 observed during muscle contractions in SHR.


2003 ◽  
Vol 284 (4) ◽  
pp. H1212-H1216 ◽  
Author(s):  
D. I. New ◽  
A. M. S. Chesser ◽  
R. C. Thuraisingham ◽  
M. M. Yaqoob

Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 μl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 ± 2.9%) compared with both WKYC (39 ± 2.5%, P = 0.035) and SHR (40 ± 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU ( P < 0.001) and WKYC ( P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.


1987 ◽  
Vol 252 (3) ◽  
pp. F480-F486 ◽  
Author(s):  
B. M. Iversen ◽  
I. Sekse ◽  
J. Ofstad

Renal blood flow (RBF) autoregulation was examined in untreated 10- and 40-wk-old spontaneously hypertensive rats (SHR) [mean arterial pressure (MAP) 125 +/- 4 and 167 +/- 7 mmHg] and in captopril-treated (7 days) 10- and 40-wk-old SHR (88 +/- 7 and 112 +/- 5 mmHg). Age-matched Wistar-Kyoto rats (WKY) were used as controls (MAP 91 +/- 3 and 104 +/- 2 mmHg). The study was carried out in rats with and without acute uninephrectomy. In 10-wk-old acutely uninephrectomized animals, the lower pressure limit of autoregulation was 78 +/- 4 mmHg in WKY, 102 +/- 5 mmHg in SHR (P less than 0.02), and 78 +/- 7 mmHg in captopril-treated SHR (P greater than 0.10). The renal vascular resistance (RVR) was significantly elevated at the lower pressure limit of RBF autoregulation in untreated SHR (P less than 0.02) but became normal after treatment (P greater than 0.10). Neither uninephrectomy nor variation of RBF between different batches seemed to influence the lower pressure limit of RBF autoregulation. In 40-wk-old acutely nephrectomized animals, the lower pressure limit of RBF autoregulation in WKY was 85 +/- 4 mmHg, 128 +/- 3 mmHg in SHR (P less than 0.001), and 101 +/- 5 mmHg in captopril-treated SHR (P less than 0.01). RVR at the lower pressure limit was increased in untreated SHR (P less than 0.01), but fell to normal values during captopril treatment. Neither the uninephrectomy nor variation of RBF between different batches of rats seemed to influence the lower pressure limit of RBF autoregulation.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 296 (4) ◽  
pp. H1038-H1047 ◽  
Author(s):  
Steven G. Denniss ◽  
James W. E. Rush

The fact that endothelium removal increases diameter and compliance in the common carotid artery (CCA) of spontaneously hypertensive rats (SHR) and that improving CCA endothelium-dependent vasorelaxation has been shown to normalize a reduced systolic blood flow through the SHR CCA compared with normotensive Wistar-Kyoto rats (WKY) suggests that endothelial vasomotor dysfunction may be linked to altered large artery hemodynamics in hypertension. The experiments herein were designed to further investigate WKY and SHR CCA hemodynamics and endothelium-dependent vasomotor functions. It was hypothesized that CCA blood flow and conductance would be reduced throughout the cardiac cycle in SHR and that endothelium-dependent contractile activity would impair SHR CCA vasorelaxation. We report that mean, maximal systolic, and diastolic blood flow was reduced in SHR vs. WKY CCA, as was vascular conductance. Pressure was augmented in SHR CCA and accompanied by late systolic flow augmentation so that total flow during systole was indeed no different between strains, possibly explained by earlier lower body wave reflection. While ACh stimulation in isolated precontracted WKY CCA caused a robust nitric oxide (NO)-mediated vasorelaxation, endothelium-dependent, cyclooxygenase (COX)-mediated contractile activity stimulated by high ACh concentration impaired NO- and non-NO/non-COX-mediated vasorelaxation in precontracted SHR CCA. In quiescent CCA, this endothelium-dependent contractile response was COX-1 and thromboxane-prostanoid receptor mediated and modulated by the availability of NO. These data collectively suggest that endothelium-dependent, COX-mediated endoperoxide signaling in the CCA of SHR may elicit vasoconstriction, which could shift the mechanical properties of this conduit artery and contribute to reduced CCA blood flow in vivo.


2001 ◽  
pp. 169-178 ◽  
Author(s):  
M Iwase ◽  
S Sandler ◽  
PO Carlsson ◽  
C Hellerstrom ◽  
L Jansson

The aim of the study was to investigate if hypertension affects pancreatic islet blood flow and endocrine function. For this purpose, spontaneously hypertensive rats (SHR) were compared with normotensive control Wistar-Kyoto rats (WKY). Both islet size and islet cell replication in 4-month-old SHR was increased compared with WKY. The (pro)insulin biosynthesis was reduced in islets isolated from SHR, whereas the insulin content was unchanged. A hyperinsulinemic response to glucose in vivo was observed in 4- and 12-month-old SHR. Pancreatic blood flow, measured using a microsphere technique, was lower in SHR than in WKY in rats aged 5 weeks, 4 months or 1 year. Islet blood flow was lower in 4-month-old and 1-year-old SHR. In 4-month-old animals, islet blood flow was unaffected by administration of enalaprilate and prazosin in both strains, but was markedly decreased by the administration of N(G)-methyl-L-arginine. It was concluded that the islets of SHR have a decreased insulin production in vitro and a decreased islet blood perfusion. The reasons for this are likely to be multifactorial. Because SHR maintained an essentially normal glucose tolerance, an adaptation of the beta-cells to the metabolic and hemodynamic changes imposed by hypertension occurred.


1979 ◽  
Vol 236 (3) ◽  
pp. F246-F251 ◽  
Author(s):  
W. J. Arendshorst ◽  
W. H. Beierwaltes

Renal and nephron hemodynamics were compared between anesthetized, nondiuretic, spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). Although the mean arterial pressure was higher in SHR than in WKY, 158 VS. 114 mmHg, glomerular filtration rate (GFR) and renal blood flow (RBF) were similar in both groups. So were intrarenal hydrostatic pressures, single nephron GFR (SNGFR), and single nephron blood flow (SNBF). Accordingly, the increased renal vascular resistance (RVR) in SHR was due to predominant preglomerular vasoconstriction. In a second group of SHR, SHR-AC, the femoral arterial pressure was reduced acutely to 114 mmHg by means of aortic constriction above the renal arteries. The mean values for GFR, RBF, SNGFR, SNBF, and intrarenal hydrostatic pressures resembled those in SHR, whereas RVR was less in SHR-AC. These autoregulatory adjustments of RVR were again largely limited to the preglomerular vasculature. Efferent arteriolar resistance was similar in all three groups. We conclude that the enhanced RVR in 12-wk-old SHR is primarily a consequence of a physiological, autoregulatory response of afferent arteriolar resistance to the elevated arterial pressure. Further, RVR in SHR is not fixed and constant but responds appropriately to reductions in renal perfusion pressure.


2008 ◽  
Vol 86 (11) ◽  
pp. 737-744 ◽  
Author(s):  
Yu-Jing Gao ◽  
Lu-Fang Yang ◽  
Shelley Stead ◽  
Robert M.K.W. Lee

The effect of an increased blood flow on vascular remodeling was studied in the mesenteric arteries of 11–12-week-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar–Kyoto rats (WKY). Increased blood flow was induced by selective ligation of mesenteric arteries. Nearby arteries with normal blood flow were used as controls. 7–10 days after the ligation procedure, mesenteric arteries were fixed in situ at maximal relaxation by perfusion fixation. Morphometric measurement of vascular dimension was carried out with confocal microscopy. Apoptotic cells were detected by the TdT-mediated dUTP nick-end labelling method. Cell growth was quantified by using proliferating cell nuclear antigen (PCNA) in sections of paraffin-embedded vessels. In SHR, elevated blood flow increased the vessel wall dimension and the number of smooth muscle cell (SMC) layers and also increased the wall-to-lumen ratio and the number of PCNA-positive SMC, but did not change lumen size or number of apoptotic SMC. In WKY, on the other hand, increased blood flow resulted in an increase in lumen diameter, a reduction of apoptotic SMC, but no change in wall-to-lumen ratio, number of SMC layers, or number of PCNA-positive SMC. These results showed that mesenteric arteries from hypertensive and normotensive rats respond to an increase in blood flow differently: a lumen enlargement with reduced SMC apoptosis in WKY, but an increased wall-to-lumen ratio with enhanced SMC growth in SHR. Although it remains to be determined whether flow alteration is one of the initiating factors in the development of vascular remodeling in hypertension, we speculate that an increase in cardiac output, and therefore an increase in shear stress that occurs in young SHR, contributes to vascular remodelling in this model of hypertension.


Sign in / Sign up

Export Citation Format

Share Document