scholarly journals Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode

2012 ◽  
Vol 109 (25) ◽  
pp. 10119-10124 ◽  
Author(s):  
J. L. Lozano-Torres ◽  
R. H. P. Wilbers ◽  
P. Gawronski ◽  
J. C. Boshoven ◽  
A. Finkers-Tomczak ◽  
...  
2017 ◽  
Vol 30 (4) ◽  
pp. 325-333 ◽  
Author(s):  
Shuai Wang ◽  
Shu Wang ◽  
Qi Sun ◽  
Leiyun Yang ◽  
Ying Zhu ◽  
...  

The phytohormone cytokinin (CK) is not only essential for plant growth and development but also impacts plant immunity. A mutant screen in a constitutively active plant immune receptor mutant snc1 (suppressor of npr1, constitutive1) identified a suppressor mutation of SNC1-induced defense responses in an ABC transporter coding gene ABCG14. ABCG14 transports CK from roots to the shoots, and the suppression of the SNC1-mediated defense response by the loss of ABCG14 is due to a deficiency of trans-zeatin (tZ)-type CK in the shoot. In addition, exogenous application of the tZ-type CK enhances disease resistance associated with increased expression of the plant immune receptor gene SNC1. Taken together, this study further established the role of tZ-type CK in disease resistance and suggests a new intersection of CKs with plant immunity at the expression regulation of a plant immune receptor gene.


2018 ◽  
Author(s):  
Wangsheng Zhu ◽  
Maricris Zaidem ◽  
Anna-Lena Van de Weyer ◽  
Rafal M. Gutaker ◽  
Eunyoung Chae ◽  
...  

AbstractPlants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves as a nexus for the trade-off between growth and pathogen resistance in wild populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, first identified in the natural accession Est-1, is found in over 10% of wild strains, even though it causes a clear fitness penalty under optimal growth conditions. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that the population genetic basis of ACD6 modulation is complex, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.Author summaryPlants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.


2021 ◽  
Author(s):  
Letícia Kuster Mitre ◽  
Natália Sousa Teixeira-Silva ◽  
Katarzyna Rybak ◽  
Diogo Maciel Magalhães ◽  
Reinaldo Rodrigues de Souza-Neto ◽  
...  

SummaryPlants employ cell surface receptors to recognize pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs), which are crucial for immune system activation. The well-studied Arabidopsis thaliana ELONGATION FACTOR-TU RECEPTOR (EFR) recognizes the conserved bacterial PAMP EF-Tu, and the derived peptides elf18 and elf26. The interfamily transfer of EFR has been shown to increase disease resistance in several crops, such as tomato, rice, wheat, and potato. Here, we generated sweet orange (Citrus sinensis) transgenic lines expressing EFR to test if it would confer broad-spectrum resistance against two important citrus bacterial diseases: citrus canker and citrus variegated chlorosis (CVC). Independent EFR transgenic lines gained responsiveness to elf18 and elf26 peptides from Xanthomonas citri and Xylella fastidiosa, as measured by reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) activation and defense gene expression. Consistently, infection assays showed that Citrus-EFR transgenic plants were more resistant to citrus canker and CVC. Our results show that the EFR immune receptor can improve plant immunity in a perennial crop against bacterial pathogens, opening perspectives to engineer durable broad-spectrum disease resistance under field conditions.


2019 ◽  
Vol 294 (35) ◽  
pp. 13006-13016 ◽  
Author(s):  
Freya A. Varden ◽  
Hiromasa Saitoh ◽  
Kae Yoshino ◽  
Marina Franceschetti ◽  
Sophien Kamoun ◽  
...  

2012 ◽  
Vol 24 (8) ◽  
pp. 3420-3434 ◽  
Author(s):  
Diane G.O. Saunders ◽  
Susan Breen ◽  
Joe Win ◽  
Sebastian Schornack ◽  
Ingo Hein ◽  
...  

2019 ◽  
Author(s):  
Freya A. Varden ◽  
Hiromasa Saitoh ◽  
Kae Yoshino ◽  
Marina Franceschetti ◽  
Sophien Kamoun ◽  
...  

ABSTRACTUnconventional integrated domains in plant intracellular immune receptors (NLRs) can directly bind translocated pathogen effector proteins to initiate an immune response. The rice immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the Magnaporthe oryzae effectors AVR-Pik and AVR-Pia, respectively. These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains maintain specificity of recognition, even for structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance towards the “mismatched” effector AVR-Pia in planta, and that the Pikp-HMA domain binds AVR-Pia in vitro. The HMA domain from another Pik-1 allele, Pikm, is unable to bind AVR-Pia, and does not trigger a response in plants. The crystal structure of Pikp-HMA bound to AVR-Pia reveals a different binding interface compared to AVR-Pik effectors, suggesting plasticity in integrated domain/effector interactions. This work shows how a single NLR can bait multiple pathogen effectors via an integrated domain, and may enable engineering immune receptors with extended disease resistance profiles.


Sign in / Sign up

Export Citation Format

Share Document