rxlr effector
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 24)

H-INDEX

26
(FIVE YEARS 4)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12576
Author(s):  
Avery C. Wilson ◽  
William R. Morgan

Background Phytophthora plant pathogens secrete effector proteins that are translocated into host plant cells during infection and collectively contribute to pathogenicity. A subset of these host-translocated effectors can be identified by the amino acid motif RXLR (arginine, any amino acid, leucine, arginine). Bioinformatics analysis has identified hundreds of putative RXLR effector genes in Phytophthora genomes, but the specific molecular function of most remains unknown. Methods Here we describe initial studies to investigate the use of Saccharomyces cerevisiae as a eukaryotic model to explore the function of Phytophthora RXLR effector proteins. Results and Conclusions Expression of individual RXLR effectors in yeast inhibited growth, consistent with perturbation of a highly conserved cellular process. Transcriptome analysis of yeast cells expressing the poorly characterized P. sojae RXLR effector Avh110 identified nearly a dozen yeast genes whose expression levels were altered greater than two-fold compared to control cells. All five of the most down-regulated yeast genes are normally induced under low phosphate conditions via the PHO4 transcription factor, indicating that PsAvh110 perturbs the yeast regulatory network essential for phosphate homeostasis and suggesting likely PsAvh110 targets during P. sojae infection of its soybean host.


2021 ◽  
Author(s):  
Gregory Vogel ◽  
Garrett Giles ◽  
Kelly R. Robbins ◽  
Michael A. Gore ◽  
Christine D. Smart

ABSTRACTThe development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes that are involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions – representing commercial varieties, sources of resistance, and host differentials – with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared to others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS, perhaps controlled by many genes of small effect or by multiple alleles that have arisen independently at the same loci.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Luo ◽  
Xinyuan Sun ◽  
Yetong Qi ◽  
Jing Zhou ◽  
Xintong Wu ◽  
...  

Abstract Background The oomycete pathogen secretes many effectors into host cells to manipulate host defenses. For the majority of effectors, the mechanisms related to how they alter the expression of host genes and reprogram defenses are not well understood. In order to investigate the molecular mechanisms governing the influence that the Phytophthora infestans RXLR effector Pi04089 has on host immunity, a comparative transcriptome analysis was conducted on Pi04089 stable transgenic and wild-type potato plants. Results Potato plants stably expressing Pi04089 were more susceptible to P. infestans. RNA-seq analysis revealed that 658 upregulated genes and 722 downregulated genes were characterized in Pi04089 transgenic lines. A large number of genes involved in the biological process, including many defense-related genes and certain genes that respond to salicylic acid, were suppressed. Moreover, the comparative transcriptome analysis revealed that Pi04089 significantly inhibited the expression of many flg22 (a microbe-associated molecular pattern, PAMP)-inducible genes, including various Avr9/Cf-9 rapidly elicited (ACRE) genes. Four selected differentially expressed genes (StWAT1, StCEVI57, StKTI1, and StP450) were confirmed to be involved in host resistance against P. infestans when they were transiently expressed in Nicotiana benthamiana. Conclusion The P. infestans effector Pi04089 was shown to suppress the expression of many resistance-related genes in potato plants. Moreover, Pi04089 was found to significantly suppress flg22-triggered defense signaling in potato plants. This research provides new insights into how an oomycete effector perturbs host immune responses at the transcriptome level.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010104
Author(s):  
Haonan Wang ◽  
Baodian Guo ◽  
Bo Yang ◽  
Haiyang Li ◽  
Yuanpeng Xu ◽  
...  

In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.


Author(s):  
Tianli Li ◽  
Gan Ai ◽  
Xiaowei Fu ◽  
Jin Liu ◽  
Hai Zhu ◽  
...  

The oomycete pathogen Phytophthora capsici encodes hundreds of RXLR effectors to enter plant cells and suppress host defense responses. Only few of them are conserved across different strains and species. Such ‘core effectors’ may target hub immunity pathways that are essential during Phytophthora pathogens interacting with their hosts. However, the underlying mechanisms of core RXLRs-mediated host immunity manipulation are largely unknown. Here, we report the functional characterization of a P. capsici RXLR effector, RXLR242. RXLR242 expression is highly induced during the infection process. Its ectopic expression in Nicotiana benthamiana promotes Phytophthora infection. RXLR242 physically interacts with a group of RAB proteins, which belong to the small GTPase family and function in specifying transport pathways in the intracellular membrane trafficking system. RXLR242 impedes the secretion of PATHOGENESIS-RELATED 1 (PR1) protein to the apoplast by interfering the formation of RABE1-7-labeled vesicles. Further analysis indicated that such phenomenon is resulted from competitive binding of RXLR242 to RABE1-7. RXLR242 also interferes trafficking of the membrane-located receptor FLAGELLIN-SENSING 2 (FLS2) through competitively interacting with RABA4-3. Taken together, our work demonstrates that RXLR242 manipulates plant immunity by targeting RAB proteins and disturbing vesicle-mediated protein transporting pathway in plant hosts.


Author(s):  
Peter Thorpe ◽  
Ramesh R Vetukuri ◽  
Pete E Hedley ◽  
Jenny Morris ◽  
Maximilian A Whisson ◽  
...  

Abstract Species of Phytophthora, plant pathogenic eukaryotic microbes, can cause disease on many tree species. Genome sequencing of species from this genus has helped to determine components of their pathogenicity arsenal. Here we sequenced genomes for two widely distributed species, P. pseudosyringae and P. boehmeriae, yielding genome assemblies of 49 Mb and 40 Mb, respectively. We identified more than 280 candidate disease promoting RXLR effector coding genes for each species, and hundreds of genes encoding candidate plant cell wall degrading carbohydrate active enzymes (CAZymes). These data boost genome sequence representation across the Phytophthora genus, and form resources for further study of Phytophthora pathogenesis.


2021 ◽  
Author(s):  
Xiangxiu Liang ◽  
Yazhou Bao ◽  
Meixiang Zhang ◽  
Dandan Du ◽  
Shaofei Rao ◽  
...  

2021 ◽  
Author(s):  
Xiao Lin ◽  
Andrea Olave-Achury ◽  
Robert Heal ◽  
Kamil Witek ◽  
Hari S. Karki ◽  
...  

Diverse pathogens from the genus Phytophthora cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat- containing (NLR) proteins, that recognize RXLR effectors. However, whether NLR proteins can recognize RXLR effectors from multiple different Phytophthora pathogens has rarely been investigated. Here, we report the effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from S. americanum. We show here that AVRamr3 is broadly conserved in many different Phytophthora species, and that recognition of AVRamr3 homologs enables resistance against multiple Phytophthora pathogens, including P. parasitica and P. palmivora. Our findings suggest a novel path to identifying R genes against important plant pathogens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249637
Author(s):  
Elysa J. R. Overdijk ◽  
Vera Putker ◽  
Joep Smits ◽  
Han Tang ◽  
Klaas Bouwmeester ◽  
...  

Plant pathogens often exploit a whole range of effectors to facilitate infection. The RXLR effector AVR1 produced by the oomycete plant pathogen Phytophthora infestans suppresses host defense by targeting Sec5. Sec5 is a subunit of the exocyst, a protein complex that is important for mediating polarized exocytosis during plant development and defense against pathogens. The mechanism by which AVR1 manipulates Sec5 functioning is unknown. In this study, we analyzed the effect of AVR1 on Sec5 localization and functioning in the moss Physcomitrium patens. P. patens has four Sec5 homologs. Two (PpSec5b and PpSec5d) were found to interact with AVR1 in yeast-two-hybrid assays while none of the four showed a positive interaction with AVR1ΔT, a truncated version of AVR1. In P. patens lines carrying β-estradiol inducible AVR1 or AVR1ΔT transgenes, expression of AVR1 or AVR1ΔT caused defects in the development of caulonemal protonema cells and abnormal morphology of chloronema cells. Similar phenotypes were observed in Sec5- or Sec6-silenced P. patens lines, suggesting that both AVR1 and AVR1ΔT affect exocyst functioning in P. patens. With respect to Sec5 localization we found no differences between β-estradiol-treated and untreated transgenic AVR1 lines. Sec5 localizes at the plasma membrane in growing caulonema cells, also during pathogen attack, and its subcellular localization is the same, with or without AVR1 in the vicinity.


2021 ◽  
Author(s):  
Ruiqi Liu ◽  
Tingting Chen ◽  
Xiao Yin ◽  
Gaoqing Xiang ◽  
Jing Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document