scholarly journals A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression

2002 ◽  
Vol 99 (13) ◽  
pp. 8921-8926 ◽  
Author(s):  
K. Ito ◽  
S. Lim ◽  
G. Caramori ◽  
B. Cosio ◽  
K. F. Chung ◽  
...  
2016 ◽  
Vol 76 (1) ◽  
pp. 277-285 ◽  
Author(s):  
Chiara Angiolilli ◽  
Pawel A Kabala ◽  
Aleksander M Grabiec ◽  
Iris M Van Baarsen ◽  
Bradley S Ferguson ◽  
...  

ObjectivesNon-selective histone deacetylase (HDAC) inhibitors (HDACi) have demonstrated anti-inflammatory properties in both in vitro and in vivo models of rheumatoid arthritis (RA). Here, we investigated the potential contribution of specific class I and class IIb HDACs to inflammatory gene expression in RA fibroblast-like synoviocytes (FLS).MethodsRA FLS were incubated with pan-HDACi (ITF2357, givinostat) or selective HDAC1/2i, HDAC3/6i, HDAC6i and HDAC8i. Alternatively, FLS were transfected with HDAC3, HDAC6 or interferon (IFN)-α/β receptor alpha chain (IFNAR1) siRNA. mRNA expression of interleukin (IL)-1β-inducible genes was measured by quantitative PCR (qPCR) array and signalling pathway activation by immunoblotting and DNA-binding assays.ResultsHDAC3/6i, but not HDAC1/2i and HDAC8i, significantly suppressed the majority of IL-1β-inducible genes targeted by pan-HDACi in RA FLS. Silencing of HDAC3 expression reproduced the effects of HDAC3/6i on gene regulation, contrary to HDAC6-specific inhibition and HDAC6 silencing. Screening of the candidate signal transducers and activators of transcription (STAT)1 transcription factor revealed that HDAC3/6i abrogated STAT1 Tyr701 phosphorylation and DNA binding, but did not affect STAT1 acetylation. HDAC3 activity was required for type I IFN production and subsequent STAT1 activation in FLS. Suppression of type I IFN release by HDAC3/6i resulted in reduced expression of a subset of IFN-dependent genes, including the chemokines CXCL9 and CXCL11.ConclusionsInhibition of HDAC3 in RA FLS largely recapitulates the effects of pan-HDACi in suppressing inflammatory gene expression, including type I IFN production in RA FLS. Our results identify HDAC3 as a potential therapeutic target in the treatment of RA and type I IFN-driven autoimmune diseases.


2021 ◽  
Vol 48 (4) ◽  
pp. 57-61
Author(s):  
H. J. Koch

Abstract The human genome consists of roughly 23000 genes which cannot explain the enormous diversity of proteins or behavior. A second epigenetic code warrants adaptive variation of gene expression. The rationale of this variation are transfer reactions such as methylation, acetylation or phosphorylation of DNA or histones including reverse reactions which are supposed to be altered by electroconvulsive therapy (ECT). The method has been successfully used since the 1930ies but the underlying molecular mechanism of action has not been elucidated yet. The paper discusses the theoretical involvement of epigenetic gene expression as an adaptive process to explain biochemical changes after ECT administration.


2019 ◽  
Author(s):  
John Eaton ◽  
Richard A. Ruberto ◽  
Anneke Kramm ◽  
Vasanthi S. Viswanathan ◽  
Stuart Schreiber

<div><div><div><p>GPX4 represents a promising yet difficult-to-drug therapeutic target for the treatment of, among others, drug-resistant cancers. While most GPX4 inhibitors rely on a chloroacetamide moiety to modify covalently the protein’s catalytic selenocysteine residue, the discovery and mechanistic elucidation of structurally diverse GPX4-inhibiting molecules has uncovered novel electrophilic warheads that bind and inhibit GPX4. Here we report our discovery that diacylfuroxans can act as masked nitrile oxides that inhibit GPX4 covalently. These observations illuminate a novel molecular mechanism of action for biologically active furoxans and also suggest that nitrile oxides may be uniquely suited to targeting GPX4.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document