scholarly journals Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding

2016 ◽  
Vol 113 (29) ◽  
pp. 8230-8235 ◽  
Author(s):  
Idlir Liko ◽  
Matteo T. Degiacomi ◽  
Shabaz Mohammed ◽  
Shinya Yoshikawa ◽  
Carla Schmidt ◽  
...  

Bovine cytochrome c oxidase is an integral membrane protein complex comprising 13 protein subunits and associated lipids. Dimerization of the complex has been proposed; however, definitive evidence for the dimer is lacking. We used advanced mass spectrometry methods to investigate the oligomeric state of cytochrome c oxidase and the potential role of lipids and posttranslational modifications in its subunit interfaces. Mass spectrometry of the intact protein complex revealed that both the monomer and the dimer are stabilized by large lipid entities. We identified these lipid species from the purified protein complex, thus implying that they interact specifically with the enzyme. We further identified phosphorylation and acetylation sites of cytochrome c oxidase, located in the peripheral subunits and in the dimer interface, respectively. Comparing our phosphorylation and acetylation sites with those found in previous studies of bovine, mouse, rat, and human cytochrome c oxidase, we found that whereas some acetylation sites within the dimer interface are conserved, suggesting a role for regulation and stabilization of the dimer, phosphorylation sites were less conserved and more transient. Our results therefore provide insights into the locations and interactions of lipids with acetylated residues within the dimer interface of this enzyme, and thereby contribute to a better understanding of its structure in the natural membrane. Moreover dimeric cytochrome c oxidase, comprising 20 transmembrane, six extramembrane subunits, and associated lipids, represents the largest integral membrane protein complex that has been transferred via electrospray intact into the gas phase of a mass spectrometer, representing a significant technological advance.

2012 ◽  
Vol 418 (5) ◽  
pp. 379-389 ◽  
Author(s):  
Ji Li ◽  
Zachary M. James ◽  
Xiaoqiong Dong ◽  
Christine B. Karim ◽  
David D. Thomas

FEBS Letters ◽  
1986 ◽  
Vol 198 (2) ◽  
pp. 279-282 ◽  
Author(s):  
Harald Schulz ◽  
Georg Fuchs

2018 ◽  
Vol 132 (2) ◽  
pp. jcs223453 ◽  
Author(s):  
Norbert Volkmar ◽  
Maria-Laetitia Thezenas ◽  
Sharon M. Louie ◽  
Szymon Juszkiewicz ◽  
Daniel K. Nomura ◽  
...  

1988 ◽  
Vol 8 (2) ◽  
pp. 564-570
Author(s):  
P A Maher ◽  
S J Singer

A monoclonal antibody (MAb 30B6) was recently described by Rogalski and Singer (J. Cell Biol. 101:785-801, 1985) which identified an integral membrane glycoprotein of chicken cells that was associated with a wide variety of sites of actin microfilament attachments to membranes. In this report, we present a further characterization of this integral protein. An immunochemical comparison was made of MAb 30B6 binding properties with those of two other MAbs, JG9 and JG22, which identify a component of a membrane protein complex that interacts with extracellular matrix proteins including fibronectin. We showed that the 110-kilodalton protein recognized by MAb 30B6 in extracts of chicken gizzard smooth muscle is identical, or closely related, to the protein that reacts with MAbs JG9 and JG22. These 110-kilodalton proteins are also structurally closely similar, if not identical, to one another as demonstrated by 125I-tryptic peptide maps. However, competition experiments showed that MAb 30B6 recognizes a different epitope from those recognized by MAbs JG9 and JG22. In addition, the 30B6 antigen is part of a complex that can be isolated on fibronectin columns. These results together establish that the 30B6 antigen is the same as, or closely similar to, the beta-chain of the protein complex named integrin, which is the complex on chicken fibroblast membranes that binds fibronectin. Although the 30B6 antigen is present in a wide range of tissues, its apparent molecular weight on gels varies in different tissues. These differences in apparent molecular weight are due, in large part, to differences in glycosylation.


Sign in / Sign up

Export Citation Format

Share Document