scholarly journals Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE

2017 ◽  
Vol 114 (45) ◽  
pp. 11861-11866 ◽  
Author(s):  
Andra J. Garner ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Robert E. Kopp ◽  
Ning Lin ◽  
...  

The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.

2015 ◽  
Vol 112 (41) ◽  
pp. 12610-12615 ◽  
Author(s):  
Andra J. Reed ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Ning Lin ◽  
Benjamin P. Horton ◽  
...  

In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


2018 ◽  
Vol 115 (41) ◽  
pp. 10281-10286 ◽  
Author(s):  
Dorothy M. Peteet ◽  
Jonathan Nichols ◽  
Timothy Kenna ◽  
Clara Chang ◽  
James Browne ◽  
...  

New York City (NYC) is representative of many vulnerable coastal urban populations, infrastructures, and economies threatened by global sea level rise. The steady loss of marshes in NYC’s Jamaica Bay is typical of many urban estuaries worldwide. Essential to the restoration and preservation of these key wetlands is an understanding of their sedimentation. Here we present a reconstruction of the history of mineral and organic sediment fluxes in Jamaica Bay marshes over three centuries, using a combination of density measurements and a detailed accretion model. Accretion rate is calculated using historical land use and pollution markers, through a wide variety of sediment core analyses including geochemical, isotopic, and paleobotanical analyses. We find that, since 1800 CE, urban development dramatically reduced the input of marsh-stabilizing mineral sediment. However, as mineral flux decreased, organic matter flux increased. While this organic accumulation increase allowed vertical accumulation to outpace sea level, reduced mineral content causes structural weakness and edge failure. Marsh integrity now requires mineral sediment addition to both marshes and subsurface channels and borrow pits, a solution applicable to drowning estuaries worldwide. Integration of marsh mineral/organic accretion history with modeling provides parameters for marsh preservation at specific locales with sea level rise.


2001 ◽  
Vol 32 (1) ◽  
pp. 61-88 ◽  
Author(s):  
Vivien Gornitz ◽  
Stephen Couch ◽  
Ellen K Hartig

2010 ◽  
Vol 49 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Brian A. Colle ◽  
Katherine Rojowsky ◽  
Frank Buonaito

Abstract A climatological description (“climatology”) of storm surges and actual flooding (storm tide) events from 1959 to 2007 is presented for the New York City (NYC) harbor. The prevailing meteorological conditions associated with these surges are also highlighted. Two surge thresholds of 0.6–1.0 m and >1.0 m were used at the Battery, New York (south side of Manhattan in NYC), to identify minor and moderate events, respectively. The minor-surge threshold combined with a tide at or above mean high water (MHW) favors a coastal flood advisory for NYC, and the moderate surge above MHW leads to a coastal flood warning. The number of minor surges has decreased gradually during the last several decades at NYC while the number of minor (storm tide) flooding events has increased slightly given the gradual rise in sea level. There were no moderate flooding events at the Battery from 1997 to 2007, which is the quietest period during the last 50 yr. However, if sea level rises 12–50 cm during the next century, the number of moderate flooding events is likely to increase exponentially. Using cyclone tracking and compositing of the NCEP global reanalysis (before 1979) and regional reanalysis (after 1978) data, the mean synoptic evolution was obtained for the NYC surge events. There are a variety of storm tracks associated with minor surges, whereas moderate surges favor a cyclone tracking northward along the East Coast. The average surface winds at NYC veer from northwesterly at 48 h before the time of maximum surge to a persistent period of east-northeasterlies beginning about 24 h before the surge. There is a relatively large variance in wind directions and speeds around the time of maximum surge, thus suggesting the importance of other factors (fetch, storm duration and track, etc.).


2019 ◽  
Vol 1439 (1) ◽  
pp. 71-94 ◽  
Author(s):  
Vivien Gornitz ◽  
Michael Oppenheimer ◽  
Robert Kopp ◽  
Philip Orton ◽  
Maya Buchanan ◽  
...  

2010 ◽  
Vol 1 (1) ◽  
pp. 357-384
Author(s):  
C. F. Schleussner ◽  
K. Frieler ◽  
M. Meinshausen ◽  
J. Yin ◽  
A. Levermann

Abstract. In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from MAGICC6. For RCP3-PD with a global mean temperature median below 1.0 °C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 °C over the 21st century. Additional Greenland melt water of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10%, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm till 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Harvey Leifert

The storm surge affected 11.4% more people and 11.6% more housing units than it would have without sea level rise.


2011 ◽  
Vol 2 (2) ◽  
pp. 191-200 ◽  
Author(s):  
C. F. Schleussner ◽  
K. Frieler ◽  
M. Meinshausen ◽  
J. Yin ◽  
A. Levermann

Abstract. In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 °C warming relative to the year 2000, we project an ensemble median weakening of up to 11% compared to 22% under RCP4.5 with a warming median up to 1.9 °C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10%, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.


Sign in / Sign up

Export Citation Format

Share Document