scholarly journals Superdiffusive transport of energy in one-dimensional metals

2020 ◽  
Vol 117 (23) ◽  
pp. 12713-12718
Author(s):  
Vir B. Bulchandani ◽  
Christoph Karrasch ◽  
Joel E. Moore

Metals in one spatial dimension are described at the lowest energy scales by the Luttinger liquid theory. It is well understood that this free theory, and even interacting integrable models, can support ballistic transport of conserved quantities including energy. In contrast, realistic one-dimensional metals, even without disorder, contain integrability-breaking interactions that are expected to lead to thermalization and conventional diffusive linear response. We argue that the expansion of energy when such a nonintegrable Luttinger liquid is locally heated above its ground state shows superdiffusive behavior (i.e., spreading of energy that is intermediate between diffusion and ballistic propagation), by combining an analytical anomalous diffusion model with numerical matrix-product–state calculations on a specific perturbed spinless fermion chain. Different metals will have different scaling exponents and shapes in their energy spreading, but the superdiffusive behavior is stable and should be visible in time-resolved experiments.

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 116 ◽  
Author(s):  
Aidan Dang ◽  
Charles D. Hill ◽  
Lloyd C. L. Hollenberg

We detail techniques to optimise high-level classical simulations of Shor's quantum factoring algorithm. Chief among these is to examine the entangling properties of the circuit and to effectively map it across the one-dimensional structure of a matrix product state. Compared to previous approaches whose space requirements depend on r, the solution to the underlying order-finding problem of Shor's algorithm, our approach depends on its factors. We performed a matrix product state simulation of a 60-qubit instance of Shor's algorithm that would otherwise be infeasible to complete without an optimised entanglement mapping.


2013 ◽  
Vol 27 (19) ◽  
pp. 1350093 ◽  
Author(s):  
THIAGO PRUDÊNCIO ◽  
ÁLVARO FERRAZ

We consider the field renormalization group (RG) of two coupled one-spatial dimension (1D) spinless fermion chains under intraforward, interforward, interbackscattering and interumklapp interactions until two-loops order. Up to this order, we demonstrate the quantum confinement in the RG flow, where the interband chiral Fermi points reduce to single chiral Fermi points and the renormalized interaction couplings have Luttinger liquid fixed points. We show that this quasi-1D system is equivalently described in terms of one- and two-color interactions and address the problem of quantum anomaly, inherent to this system, as a direct consequence of coupling 1+1 free Dirac fields to one- and two-color interactions.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alberto Biella ◽  
Mario Collura ◽  
Davide Rossini ◽  
Andrea De Luca ◽  
Leonardo Mazza

Abstract Transport phenomena are central to physics, and transport in the many-body and fully-quantum regime is attracting an increasing amount of attention. It has been recently revealed that some quantum spin chains support ballistic transport of excitations at all energies. However, when joining two semi-infinite ballistic parts, such as the XX and XXZ spin-1/2 models, our understanding suddenly becomes less established. Employing a matrix-product-state ansatz of the wavefunction, we study the relaxation dynamics in this latter case. Here we show that it takes place inside a light cone, within which two qualitatively different regions coexist: an inner one with a strong tendency towards thermalization, and an outer one supporting ballistic transport. We comment on the possibility that even at infinite time the system supports stationary currents and displays a non-zero Kapitza boundary resistance. Our study paves the way to the analysis of the interplay between transport, integrability, and local defects.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
F. Barratt ◽  
James Dborin ◽  
Matthias Bal ◽  
Vid Stojevic ◽  
Frank Pollmann ◽  
...  

AbstractTensor networks permit computational and entanglement resources to be concentrated in interesting regions of Hilbert space. Implemented on NISQ machines they allow simulation of quantum systems that are much larger than the computational machine itself. This is achieved by parallelising the quantum simulation. Here, we demonstrate this in the simplest case; an infinite, translationally invariant quantum spin chain. We provide Cirq and Qiskit code that translates infinite, translationally invariant matrix product state (iMPS) algorithms to finite-depth quantum circuit machines, allowing the representation, optimisation and evolution of arbitrary one-dimensional systems. The illustrative simulated output of these codes for achievable circuit sizes is given.


2005 ◽  
Vol 359-361 ◽  
pp. 699-701 ◽  
Author(s):  
H. Fehske ◽  
G. Wellein ◽  
G. Hager ◽  
A. Weiße ◽  
K.W. Becker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document