scholarly journals Experimental observation of the marginal glass phase in a colloidal glass

2020 ◽  
Vol 117 (11) ◽  
pp. 5714-5718 ◽  
Author(s):  
Andrew P. Hammond ◽  
Eric I. Corwin

The replica theory of glasses predicts that in the infinite dimensional mean field limit, there exist two distinct glassy phases of matter: stable glass and marginal glass. We have developed a technique to experimentally probe these phases of matter using a colloidal glass. We avoid the difficulties inherent in measuring the long time behavior of glasses by instead focusing on the very short time dynamics of the ballistic to caged transition. We track a single tracer particle within a slowly densifying glass and measure the resulting mean squared displacement (MSD). By analyzing the MSD, we find that upon densification, our colloidal system moves through several states of matter. At lowest densities, it is a subdiffusive liquid. Next, it behaves as a stable glass, marked by the appearance of a plateau in the MSD whose magnitude shrinks with increasing density. However, this shrinking plateau does not shrink to zero; instead, at higher densities, the system behaves as a marginal glass, marked by logarithmic growth in the MSD toward that previous plateau value. Finally, at the highest experimental densities, the system returns to the stable glass phase. This provides direct experimental evidence for the existence of a marginal glass in three dimensions.

2021 ◽  
Vol 182 (2) ◽  
Author(s):  
Li Chen ◽  
Jinyeop Lee ◽  
Matthew Liew

AbstractWe study the time dependent Schrödinger equation for large spinless fermions with the semiclassical scale $$\hbar = N^{-1/3}$$ ħ = N - 1 / 3 in three dimensions. By using the Husimi measure defined by coherent states, we rewrite the Schrödinger equation into a BBGKY type of hierarchy for the k particle Husimi measure. Further estimates are derived to obtain the weak compactness of the Husimi measure, and in addition uniform estimates for the remainder terms in the hierarchy are derived in order to show that in the semiclassical regime the weak limit of the Husimi measure is exactly the solution of the Vlasov equation.


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


Author(s):  
Stefano Almi ◽  
Marco Morandotti ◽  
Francesco Solombrino

AbstractA multi-step Lagrangian scheme at discrete times is proposed for the approximation of a nonlinear continuity equation arising as a mean-field limit of spatially inhomogeneous evolutionary games, describing the evolution of a system of spatially distributed agents with strategies, or labels, whose payoff depends also on the current position of the agents. The scheme is Lagrangian, as it traces the evolution of position and labels along characteristics, and is a multi-step scheme, as it develops on the following two stages: First, the distribution of strategies or labels is updated according to a best performance criterion, and then, this is used by the agents to evolve their position. A general convergence result is provided in the space of probability measures. In the special cases of replicator-type systems and reversible Markov chains, variants of the scheme, where the explicit step in the evolution of the labels is replaced by an implicit one, are also considered and convergence results are provided.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2016 ◽  
Vol 166 (2) ◽  
pp. 211-229 ◽  
Author(s):  
Li Chen ◽  
Simone Göttlich ◽  
Qitao Yin

Sign in / Sign up

Export Citation Format

Share Document