scholarly journals Three-step nucleation of metal–organic framework nanocrystals

2021 ◽  
Vol 118 (10) ◽  
pp. e2008880118
Author(s):  
Xiangwen Liu ◽  
See Wee Chee ◽  
Sanoj Raj ◽  
Michal Sawczyk ◽  
Petr Král ◽  
...  

Metal–organic frameworks (MOFs) are crystalline nanoporous materials with great potential for a wide range of industrial applications. Understanding the nucleation and early growth stages of these materials from a solution is critical for their design and synthesis. Despite their importance, the pathways through which MOFs nucleate are largely unknown. Using a combination of in situ liquid-phase and cryogenic transmission electron microscopy, we show that zeolitic imidazolate framework-8 MOF nanocrystals nucleate from precursor solution via three distinct steps: 1) liquid–liquid phase separation into solute-rich and solute-poor regions, followed by 2) direct condensation of the solute-rich region into an amorphous aggregate and 3) crystallization of the aggregate into a MOF. The three-step pathway for MOF nucleation shown here cannot be accounted for by conventional nucleation models and provides direct evidence for the nonclassical nucleation pathways in open-framework materials, suggesting that a solute-rich phase is a common precursor for crystallization from a solution.

2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2019 ◽  
Vol 55 (60) ◽  
pp. 8705-8715 ◽  
Author(s):  
Joshua M. Tuffnell ◽  
Christopher W. Ashling ◽  
Jingwei Hou ◽  
Shichun Li ◽  
Louis Longley ◽  
...  

This Feature Article reviews a range of amorphisation mechanisms of Metal–Organic Frameworks (MOFs) and presents recent advances to produce novel MOF materials including porous MOF glasses, MOF crystal–glass composites, flux melted MOF glasses and blended zeolitic imidazolate framework glasses.


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2021 ◽  
pp. 088532822110336
Author(s):  
Ying Zhang ◽  
Ting-Ting Li ◽  
Bing-Chiuan Shiu ◽  
Jia-Horng Lin ◽  
Ching-Wen Lou

Metal-organic framework materials not only possess porous structures, but also have excellent antibacterial properties. It is of great practical significance to prepare new antibacterial materials with excellent antibacterial effect by metal-organic framework materials. In our study, Zeolitic Imidazolate Framework-8 (ZIF-8) nanomaterials with antibacterial properties were prepared via the solvent method and diethanolamine template method. The materials were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cold field-emission scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption experiment, antibacterial experiment, and biocompatibility experiment. Results showed that ZIF-8 prepared by solvent method has a more typical hexagonal structure, larger specific surface area, and smaller pore size, and the values are 1812.07 m2g−1 and 2.2412 nm, respectively. At the same time, the materials prepared by the two methods have excellent antibacterial properties, and exhibit good biocompatibility at low concentrations, the antibacterial activity against Escherichia coli and Staphylococcus aureus are higher than 95%, and the cell viabilities of the selected five material concentrations of 12.5 µg mL−1, 25 µg mL−1, 50 µg mL−1, 100 µg mL−1 and 200 µg mL−1 are more than 70%. Therefore, this study provides a feasible method for preparing Nano-scale antibacterial functional particles, and it is of great significance to broaden the application field of ZIF-8 materials and prepare ZIF-8 drug-delivery functional materials.


Clay Minerals ◽  
2019 ◽  
Vol 54 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Jamshid Behin ◽  
Elmira Ghadamnan ◽  
Hossein Kazemian

AbstractIran has significant deposits of high-purity natural zeolites. Many Iranian scholars conduct scientific research on porous materials, from natural and synthetic zeolites to metal organic framework materials. Iranian zeolite deposits and associated research are reviewed here. Various industrial applications of natural zeolites, from agriculture to animal husbandry to the construction industry and beyond are discussed here.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Peter C. Metz ◽  
Stephen C. Purdy ◽  
Matthew R. Ryder ◽  
Arvind Ganesan ◽  
Sankar Nair ◽  
...  

This work investigates the X-ray scattering signatures of disorder in the zeolitic imidazolate framework ZIF-8. Two layer disorder models are examined in reciprocal space and compared with conventional Rietveld analysis. Stacking faults along the [001] direction of the cubic lattice are in poor agreement with experimental powder diffraction data, consistent with previously reported density functional theory studies showing that these defects are energetically unfavorable compared with amorphization. Meanwhile, fluctuation of layer position along the [110] direction of the cubic lattice shows a significant agreement with experimental data. This result is interpreted analogously to an anisotropic strain mechanism, suggesting links between elastic anisotropy and crystallographic imperfections found in metal–organic framework materials. In direct space, it is demonstrated that models accounting for the static position disorder amongst the linker and metal sublattices are required to fit the experimental pair distribution function data.


2021 ◽  
Author(s):  
Meng Ge ◽  
Yanzhi Wang ◽  
Francesco Carraro ◽  
Weibin Liang ◽  
Morteza Roostaeinia ◽  
...  

<p>Metal-organic frameworks (MOFs) are known for their versatile combination of inorganic building units and organic linkers, which offers immense opportunities in a wide range of applications. However, many MOFs are typically synthesized as multiphasic polycrystalline powders, which are challenging for studies by X-ray diffraction. Therefore, developing new structural characterization techniques is highly desired in order to accelerate discoveries of new materials. Here, we report a high-throughput approach for structural analysis of MOF nano- and sub-microcrystals by three-dimensional electron diffraction (3DED). A new zeolitic-imidazolate framework (ZIF), denoted ZIF-EC1<a>, </a>was first discovered in a trace amount during the study of a known ZIF-CO<sub>3</sub>-1 material by 3DED. The structures of both ZIFs were solved and refined using 3DED data. ZIF-EC1 has a dense 3D framework structure, which is built by linking mono- and bi-nuclear Zn clusters and 2-methylimidazolates (mIm<sup>-</sup>). With a composition of Zn<sub>3</sub>(mIm)<sub>5</sub>(OH), ZIF-EC1 exhibits high N and Zn densities. We show that the N-doped carbon material derived from ZIF-EC1 is a promising electrocatalysis for oxygen reduction reaction (ORR). The discovery of this new MOF and its conversion to an efficient electrocatalyst highlights the power of 3DED in developing new materials and their applications. </p>


2021 ◽  
Author(s):  
Faezeh Taghavi ◽  
Amir Khojastehnezhad ◽  
Reza Khalifeh ◽  
Maryam Rajabzadeh ◽  
Fahimeh Rezaei ◽  
...  

The first report of the use of an acidic magnetic metal organic framework for the chemical fixation of CO2 as an environmentally friendly reaction.


Sign in / Sign up

Export Citation Format

Share Document