scholarly journals Inactivation of Hedgehog signal transduction in adult astrocytes results in region-specific blood–brain barrier defects

2021 ◽  
Vol 118 (34) ◽  
pp. e2017779118
Author(s):  
Hui Wang ◽  
Zhiyan Xu ◽  
Ziyue Xia ◽  
Michael Rallo ◽  
Andrew Duffy ◽  
...  

In this study, we use molecular genetic approaches to clarify the role of the Hedgehog (Hh) pathway in regulating the blood–brain/spinal cord barrier (BBB) in the adult mouse central nervous system (CNS). Our work confirms and extends prior studies to demonstrate that astrocytes are the predominant cell type in the adult CNS that transduce Hh signaling, revealed by the expression of Gli1, a target gene of the canonical pathway that is activated in cells receiving Hh, and other key pathway transduction components. Gli1+ (Hh-responsive) astrocytes are distributed in specific regions of the CNS parenchyma, including layers 4/5/6 of the neocortex, hypothalamus, thalamus, and spinal cord, among others. Notably, although BBB properties in endothelial cells are normally regulated by both paracellular and transcellular mechanisms, conditional inactivation of Hh signaling in astrocytes results in transient, region-specific BBB defects that affect transcytosis but not paracellular diffusion. These findings stand in contrast to prior studies that implicated astrocytes as a source of Sonic hedgehog that limited extravasation via both mechanisms [J. I. Alvarez et al., Science 334, 1727–1731 (2011)]. Furthermore, using three distinct Cre driver lines as well as pharmacological approaches to inactivate Hh-pathway transduction globally in CNS astrocytes, we find that these specific BBB defects are only detected in the rostral hypothalamus and spinal cord but not the cortex or other regions where Gli1+ astrocytes are found. Together, our data show that Gli1+ Hh-responsive astrocytes have regionally distinct molecular and functional properties and that the pathway is required to maintain BBB properties in specific regions of the adult mammalian CNS.

Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

GYNECOLOGY ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 9-16
Author(s):  
Nataly I Frolova ◽  
Tatiana E Belokrinitskaya

Background. Miscarriage is a common complication in early pregnancy. Current studies have shown a higher prevalence of miscarriage, ranging from 10 to 20%. The review is devoted to modern concepts of etiology and pathogenesis of early pregnancy losses. Aim. Assess the role of epigenetic factors and molecular-genetic markers in the pathogenesis and prediction of early pregnancy losses Materials and methods. In order to write this review domestic and foreign publications were searched in Russian and international search systems (PubMed, eLibrary, etc.) for the last 10-15 years. Relevant articles from the peer-reviewed literature and clinical practice guidelines were included. Results. Many recent studies have proved the contribution of various epigenetic factors to the pathogenesis of spontaneous miscarriages, and the molecular-genetic determination such kinds of pregnancy complication has been confirmed. Conclusion. The miscarriage in early gestation is driven by combined impact of epigenetic and molecular-genetic factors, as well as the presence of intergenic interactions. It is may lead to deterioration of physiological functions, and maternal pathologenic pathways could be changed as during her periconceptional period as so during the pregnancy.


Sign in / Sign up

Export Citation Format

Share Document