scholarly journals Breakdown of Blood-Brain and Blood-Spinal Cord Barriers During Acute Methamphetamine Intoxication: Role of Brain Temperature

2016 ◽  
Vol 15 (9) ◽  
pp. 1129-1138 ◽  
Author(s):  
Eugene A. Kiyatkin ◽  
Hari S. Sharma
2021 ◽  
Vol 118 (34) ◽  
pp. e2017779118
Author(s):  
Hui Wang ◽  
Zhiyan Xu ◽  
Ziyue Xia ◽  
Michael Rallo ◽  
Andrew Duffy ◽  
...  

In this study, we use molecular genetic approaches to clarify the role of the Hedgehog (Hh) pathway in regulating the blood–brain/spinal cord barrier (BBB) in the adult mouse central nervous system (CNS). Our work confirms and extends prior studies to demonstrate that astrocytes are the predominant cell type in the adult CNS that transduce Hh signaling, revealed by the expression of Gli1, a target gene of the canonical pathway that is activated in cells receiving Hh, and other key pathway transduction components. Gli1+ (Hh-responsive) astrocytes are distributed in specific regions of the CNS parenchyma, including layers 4/5/6 of the neocortex, hypothalamus, thalamus, and spinal cord, among others. Notably, although BBB properties in endothelial cells are normally regulated by both paracellular and transcellular mechanisms, conditional inactivation of Hh signaling in astrocytes results in transient, region-specific BBB defects that affect transcytosis but not paracellular diffusion. These findings stand in contrast to prior studies that implicated astrocytes as a source of Sonic hedgehog that limited extravasation via both mechanisms [J. I. Alvarez et al., Science 334, 1727–1731 (2011)]. Furthermore, using three distinct Cre driver lines as well as pharmacological approaches to inactivate Hh-pathway transduction globally in CNS astrocytes, we find that these specific BBB defects are only detected in the rostral hypothalamus and spinal cord but not the cortex or other regions where Gli1+ astrocytes are found. Together, our data show that Gli1+ Hh-responsive astrocytes have regionally distinct molecular and functional properties and that the pathway is required to maintain BBB properties in specific regions of the adult mammalian CNS.


Therapy ◽  
2006 ◽  
Vol 3 (1) ◽  
pp. 97-112 ◽  
Author(s):  
Rose Marie Tyson ◽  
Dale F Kraemer ◽  
Matthew A Hunt ◽  
Leslie L Muldoon ◽  
Peter Orbay ◽  
...  

Author(s):  
Unnikrishnan V S ◽  
Prashanth A S ◽  
Madhusudan Kulkarni

The science of life Ayurveda, not only deals with the prevention of diseases by maintaining health but also with the alleviation of diseases. In this ultra modern era due to change in lifestyles, sedentary works and food habits, people are unable to follow the Dinacharya and Ritucharya as explained in the classics, which may lead to different diseases. Due to improper postural habits, weight bearing and other unwholesome diets and habits there are higher the chances of discomfort and disease pertaining to spinal cord. Manyasthambha is one such condition that disturbs a big population due to today’s alterations in lifestyle. Here an effort is made to study and understand the role of Nasya Karma, Nasaapana and Shamanaushadhi like Vyoshadi Guggulu in the treatment aspect of this disease. Nasya Karma and Nasaapana provided highly significant results in all the symptoms of Manyasthambha. As per the clinical data, ‘Nasaapana is found to be more effective than Nasya Karma’. So it can be concluded that better results can be obtained with Shaddharana Yoga as Amapachana, Nasaapana with Mashabaladi Kwatha followed by Vyoshadi Guggulu as Shamanoushadhi.


Sign in / Sign up

Export Citation Format

Share Document