scholarly journals Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen

2021 ◽  
Vol 118 (33) ◽  
pp. e2107511118
Author(s):  
Jana Meixnerová ◽  
Joel D. Blum ◽  
Marcus W. Johnson ◽  
Eva E. Stüeken ◽  
Michael A. Kipp ◽  
...  

Earth’s early atmosphere witnessed multiple transient episodes of oxygenation before the Great Oxidation Event 2.4 billion years ago (Ga) [e.g., A. D. Anbar et al., Science 317, 1903–1906 (2007); M. C. Koehler, R. Buick, M. E. Barley, Precambrian Res. 320, 281–290 (2019)], but the triggers for these short-lived events are so far unknown. Here, we use mercury (Hg) abundance and stable isotope composition to investigate atmospheric evolution and its driving mechanisms across the well-studied “whiff” of O2 recorded in the ∼2.5-Ga Mt. McRae Shale from the Pilbara Craton in Western Australia [A. D. Anbar et al., Science 317, 1903–1906 (2007)]. Our data from the oxygenated interval show strong Hg enrichment paired with slightly negative ∆199Hg and near-zero ∆200Hg, suggestive of increased oxidative weathering. In contrast, slightly older beds, which were evidently deposited under an anoxic atmosphere in ferruginous waters [C. T. Reinhard, R. Raiswell, C. Scott, A. D. Anbar, T. W. Lyons, Science 326, 713–716 (2009)], show Hg enrichment coupled with positive ∆199Hg and slightly negative ∆200Hg values. This pattern is consistent with photochemical reactions associated with subaerial volcanism under intense UV radiation. Our results therefore suggest that the whiff of O2 was preceded by subaerial volcanism. The transient interval of O2 accumulation may thus have been triggered by diminished volcanic O2 sinks, followed by enhanced nutrient supply to the ocean from weathering of volcanic rocks causing increased biological productivity.

2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82205 ◽  
Author(s):  
Tatiana Lemos Bisi ◽  
Paulo Renato Dorneles ◽  
José Lailson-Brito ◽  
Gilles Lepoint ◽  
Alexandre de Freitas Azevedo ◽  
...  

2005 ◽  
Vol 19 (14) ◽  
pp. 1937-1942 ◽  
Author(s):  
Bojlul Bahar ◽  
Frank J. Monahan ◽  
Aidan P. Moloney ◽  
Padraig O'Kiely ◽  
Charlie M. Scrimgeour ◽  
...  

2015 ◽  
Vol 523 ◽  
pp. 781-789 ◽  
Author(s):  
Grzegorz Skrzypek ◽  
Adam Mydłowski ◽  
Shawan Dogramaci ◽  
Paul Hedley ◽  
John J. Gibson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document