scholarly journals Follistatin mediates learning and synaptic plasticity via regulation of Asic4 expression in the hippocampus

2021 ◽  
Vol 118 (39) ◽  
pp. e2109040118
Author(s):  
Yu-Ju Chen ◽  
Shin-Meng Deng ◽  
Hui-Wen Chen ◽  
Chi-Hui Tsao ◽  
Wei-Ting Chen ◽  
...  

The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.

Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


2010 ◽  
Vol 19 (3) ◽  
pp. 1021-1033 ◽  
Author(s):  
Alexandra Auffret ◽  
Vanessa Gautheron ◽  
Mark P. Mattson ◽  
Jean Mariani ◽  
Catherine Rovira

Endocrinology ◽  
2003 ◽  
Vol 144 (9) ◽  
pp. 4195-4203 ◽  
Author(s):  
Li Sui ◽  
M. E. Gilbert

Abstract Thyroid hormones are essential for neonatal brain development. It is well established that insufficiency of thyroid hormone during critical periods of development can impair cognitive functions. The mechanisms that underlie learning deficits in hypothyroid animals, however, are not well understood. As impairments in synaptic function are likely to contribute to cognitive deficits, the current study tested whether thyroid hormone insufficiency during development would alter quantitative characteristics of synaptic function in the hippocampus. Developing rats were exposed in utero and postnatally to 0, 3, or 10 ppm propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, administered in the drinking water of dams from gestation d 6 until postnatal day (PN) 30. Excitatory postsynaptic potentials and population spikes were recorded from the stratum radiatum and the pyramidal cell layer, respectively, in area CA1 of hippocampal slices from offspring between PN21 and PN30. Baseline synaptic transmission was evaluated by comparing input-output relationships between groups. Paired-pulse facilitation, paired-pulse depression, long-term potentiation, and long-term depression were recorded to examine short- and long-term synaptic plasticity. PTU reduced thyroid hormones, reduced body weight gain, and delayed eye-opening in a dose-dependent manner. Excitatory synaptic transmission was increased by developmental exposure to PTU. Thyroid hormone insufficiency was also dose-dependently associated with a reduction paired-pulse facilitation and long-term potentiation of the excitatory postsynaptic potential and elimination of paired-pulse depression of the population spike. The results indicate that thyroid hormone insufficiency compromises the functional integrity of synaptic communication in area CA1 of developing rat hippocampus and suggest that these changes may contribute to learning deficits associated with developmental hypothyroidism.


2010 ◽  
Vol 103 (1) ◽  
pp. 479-489 ◽  
Author(s):  
Hey-Kyoung Lee ◽  
Kogo Takamiya ◽  
Kaiwen He ◽  
Lihua Song ◽  
Richard L. Huganir

Activity-dependent changes in excitatory synaptic transmission in the CNS have been shown to depend on the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). In particular, several lines of evidence suggest that reversible phosphorylation of AMPAR subunit glutamate receptor 1 (GluR1, also referred to as GluA1 or GluR-A) plays a role in long-term potentiation (LTP) and long-term depression (LTD). We previously reported that regulation of serines (S) 831 and 845 on the GluR1 subunit may play a critical role in bidirectional synaptic plasticity in the Schaffer collateral inputs to CA1. Specifically, gene knockin mice lacking both S831 and S845 phosphorylation sites (“double phosphomutants”), where both serine residues were replaced by alanines (A), showed a faster decaying LTP and a deficit in LTD. To determine which of the two phosphorylation sites was responsible for the phenotype, we have now generated two lines of gene knockin mice: one that specifically lacks S831 (S831A mutants) and another that lacks only S845 (S845A mutants). We found that S831A mutants display normal LTP and LTD, whereas S845A mutants show a specific deficit in LTD. Taken together with our previous results from the “double phosphomutants,” our data suggest that either S831 or S845 alone may support LTP, whereas the S845 site is critical for LTD expression.


2017 ◽  
Vol 114 (27) ◽  
pp. 7136-7141 ◽  
Author(s):  
Javier Díaz-Alonso ◽  
Yujiao J. Sun ◽  
Adam J. Granger ◽  
Jonathan M. Levy ◽  
Sabine M. Blankenship ◽  
...  

The amino-terminal domain (ATD) of AMPA receptors (AMPARs) accounts for approximately 50% of the protein, yet its functional role, if any, remains a mystery. We have discovered that the translocation of surface GluA1, but not GluA2, AMPAR subunits to the synapse requires the ATD. GluA1A2 heteromers in which the ATD of GluA1 is absent fail to translocate, establishing a critical role of the ATD of GluA1. Inserting GFP into the ATD interferes with the constitutive synaptic trafficking of GluA1, but not GluA2, mimicking the deletion of the ATD. Remarkably, long-term potentiation (LTP) can override the masking effect of the GFP tag. GluA1, but not GluA2, lacking the ATD fails to show LTP. These findings uncover a role for the ATD in subunit-specific synaptic trafficking of AMPARs, both constitutively and during plasticity. How LTP, induced postsynaptically, engages these extracellular trafficking motifs and what specific cleft proteins participate in the process remain to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document