scholarly journals Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection

2021 ◽  
Vol 118 (48) ◽  
pp. e2109776118
Author(s):  
Andreas Neophytou ◽  
Dwaipayan Chakrabarti ◽  
Francesco Sciortino

Diamond-structured crystals, particularly those with cubic symmetry, have long been attractive targets for the programmed self-assembly of colloidal particles, due to their applications as photonic crystals that can control the flow of visible light. While spherical particles decorated with four patches in a tetrahedral arrangement—tetrahedral patchy particles—should be an ideal building block for this endeavor, their self-assembly into colloidal diamond has proved elusive. The kinetics of self-assembly pose a major challenge, with competition from an amorphous glassy phase, as well as clathrate crystals, leaving a narrow widow of patch widths where tetrahedral patchy particles can self-assemble into diamond crystals. Here we demonstrate that a two-component system of tetrahedral patchy particles, where bonding is allowed only between particles of different types to select even-member rings, undergoes crystallization into diamond crystals over a significantly wider range of patch widths conducive for experimental fabrication. We show that the crystallization in the two-component system is both thermodynamically and kinetically enhanced, as compared to the one-component system. Although our bottom-up route does not lead to the selection of the cubic polytype exclusively, we find that the cubicity of the self-assembled crystals increases with increasing patch width. Our designer system not only promises a scalable bottom-up route for colloidal diamond but also offers fundamental insight into crystallization into open lattices.

2021 ◽  
pp. 103851
Author(s):  
Yan Ma ◽  
Yingying Zhang ◽  
Ke Chen ◽  
Lingzhu Zhang ◽  
Yibei Zhang ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 80-91
Author(s):  
Francisco J. Albicoro ◽  
Walter O. Draghi ◽  
María C. Martini ◽  
María E. Salas ◽  
G.A. Torres Tejerizo ◽  
...  

2018 ◽  
Vol 58 ◽  
pp. 02024 ◽  
Author(s):  
Yuriy E. Obzherin ◽  
Stanislav M Sidorov ◽  
Mikhail M Nikitin

Time redundancy is a method of increasing the reliability and efficiency of the operation of systems for various purposes, in particular, energy systems. A system with time redundancy is given additional time (a time reserve) for restoring characteristics. In this paper, based on the theory of semi-Markov processes with a common phase space of states, a semi-Markov model of a two-component system with a component-wise instantly replenished time reserve is constructed. The stationary reliability characteristics of the system under consideration are determined.


1989 ◽  
Vol 44 (4) ◽  
pp. 257-261 ◽  
Author(s):  
Sławomir Błonski ◽  
Czesław Bojarski

Abstract Monte Carlo simulations of quantum yield and anisotropy of fluorescence in two-component systems have been conducted with various donor and acceptor concentrations and Förster radii ratios RDAO/RDDO. The influence of excitation migration and trapping on the fluorescence of the viscous solution has been considered. The results of the simulations have shown that steady-state fluorescence of a two-component system depends on the RDAO/RDDO ratio as predicted in LAF theory.


1985 ◽  
Vol 8 (5) ◽  
pp. 515-530
Author(s):  
F. D'Isep ◽  
L. Sertorio ◽  
R. S. Berry

Sign in / Sign up

Export Citation Format

Share Document