The role of PhoP/PhoQ two component system in regulating stress adaptation in Cronobacter sakazakii

2021 ◽  
pp. 103851
Author(s):  
Yan Ma ◽  
Yingying Zhang ◽  
Ke Chen ◽  
Lingzhu Zhang ◽  
Yibei Zhang ◽  
...  
2009 ◽  
Vol 78 (3) ◽  
pp. 1109-1122 ◽  
Author(s):  
Shuming Zhao ◽  
Grisselle E. Montanez ◽  
Pradeep Kumar ◽  
Soma Sannigrahi ◽  
Yih-Ling Tzeng

ABSTRACT Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.


2011 ◽  
Vol 79 (6) ◽  
pp. 2154-2167 ◽  
Author(s):  
Ting Xue ◽  
Yibo You ◽  
De Hong ◽  
Haipeng Sun ◽  
Baolin Sun

ABSTRACTThe Kdp system is widely distributed among bacteria. InEscherichia coli, the Kdp-ATPase is a high-affinity K+uptake system and its expression is activated by the KdpDE two-component system in response to K+limitation or salt stress. However, information about the role of this system in many bacteria still remains obscure. Here we demonstrate that KdpFABC inStaphylococcus aureusis not a major K+transporter and that the main function of KdpDE is not associated with K+transport but that instead it regulates transcription for a series of virulence factors through sensing external K+concentrations, indicating that this bacterium might modulate its infectious status through sensing specific external K+stimuli in different environments. Our results further reveal thatS. aureusKdpDE is upregulated by the Agr/RNAIII system, which suggests that KdpDE may be an important virulence regulator coordinating the external K+sensing and Agr signaling during pathogenesis in this bacterium.


2014 ◽  
Vol 80 (8) ◽  
pp. 2493-2503 ◽  
Author(s):  
Sara Esther Diomandé ◽  
Stéphanie Chamot ◽  
Vera Antolinos ◽  
Florian Vasai ◽  
Marie-Hélène Guinebretière ◽  
...  

ABSTRACTThe different strains ofBacillus cereuscan grow at temperatures covering a very diverse range. SomeB. cereusstrains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperatureB. cereusgrowth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth aboveTminand in cell survival belowTmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing thecasKRgenes in a ΔcasKRmutant restored its ability to grow atTmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of theB. cereusgroup. We show that the role of CasKR in cold growth is similar in otherB. cereus sensu latostrains with different growth temperature ranges, including psychrotolerant strains.


2007 ◽  
Vol 189 (6) ◽  
pp. 2426-2434 ◽  
Author(s):  
Yi Wen ◽  
Jing Feng ◽  
David R. Scott ◽  
Elizabeth A. Marcus ◽  
George Sachs

ABSTRACT The periplasmic α-carbonic anhydrase of Helicobacter pylori is essential for buffering the periplasm at acidic pH. This enzyme is an integral component of the acid acclimation response that allows this neutralophile to colonize the stomach. Transcription of the HP1186 α-carbonic anhydrase gene is upregulated in response to low environmental pH. A binding site for the HP0166 response regulator (ArsR) has been identified in the promoter region of the HP1186 gene. To investigate the mechanism that regulates the expression of HP1186 in response to low pH and the role of the HP0165-HP0166 two-component system (ArsRS) in this acid-inducible regulation, Northern blot analysis was performed with RNAs isolated from two different wild-type H. pylori strains (26695 and 43504) and mutants with HP0165 histidine kinase (ArsS) deletions, after exposure to either neutral pH or low pH (pH 4.5). ArsS-dependent upregulation of HP1186 α-carbonic anhydrase in response to low pH was found in both strains. Western blot analysis of H. pylori membrane proteins confirmed the regulatory role of ArsS in HP1186 expression in response to low pH. Analysis of the HP1186 promoter region revealed two possible transcription start points (TSP1 and TSP2) located 43 and 11 bp 5′ of the ATG start codon, respectively, suggesting that there are two promoters transcribing the HP1186 gene. Quantitative primer extension analysis showed that the promoter from TSP1 (43 bp 5′ of the ATG start codon) is a pH-dependent promoter and is regulated by ArsRS in combating environmental acidity, whereas the promoter from TSP2 may be responsible for control of the basal transcription of HP1186 α-carbonic anhydrase.


Microbiology ◽  
2016 ◽  
Vol 162 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Alma Reyes-González ◽  
Chouhra Talbi ◽  
Susana Rodríguez ◽  
Patricia Rivera ◽  
David Zamorano-Sánchez ◽  
...  

Food Control ◽  
2021 ◽  
pp. 108621
Author(s):  
Yan Ma ◽  
Yingying Zhang ◽  
Zhongguo Shan ◽  
Xin Wang ◽  
Xiaodong Xia

2007 ◽  
Vol 189 (17) ◽  
pp. 6293-6302 ◽  
Author(s):  
Sang-Joon Ahn ◽  
Robert A. Burne

ABSTRACT The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.


Sign in / Sign up

Export Citation Format

Share Document