Faculty Opinions recommendation of Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor.

Author(s):  
Keith Chater
2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Lei Li ◽  
Weihong Jiang ◽  
Yinhua Lu

ABSTRACT Two-component systems (TCSs), the predominant signal transduction pathways employed by bacteria, play important roles in physiological metabolism in Streptomyces. Here, a novel TCS, GluR-GluK (encoded by SCO5778-SCO5779), which is located divergently from the gluABCD operon encoding a glutamate uptake system, was identified as being involved in glutamate sensing and uptake as well as antibiotic biosynthesis in Streptomyces coelicolor. Under the condition of minimal medium (MM) supplemented with different concentrations of glutamate, deletion of the gluR-gluK operon (gluR-K) resulted in enhanced actinorhodin (ACT) but reduced undecylprodigiosin (RED) and yellow type I polyketide (yCPK) production, suggesting that GluR-GluK plays a differential role in antibiotic biosynthesis. Furthermore, we found that the response regulator GluR directly promotes the expression of gluABCD under the culture condition of MM with a high concentration of glutamate (75 mM). Using the biolayer interferometry assay, we demonstrated that glutamate acts as the direct signal of the histidine kinase GluK. It was therefore suggested that upon sensing high concentrations of glutamate, GluR-GluK would be activated and thereby facilitate glutamate uptake by increasing gluABCD expression. Finally, we demonstrated that the role of GluR-GluK in antibiotic biosynthesis is independent of its function in glutamate uptake. Considering the wide distribution of the glutamate-sensing (GluR-GluK) and uptake (GluABCD) module in actinobacteria, it could be concluded that the GluR-GluK signal transduction pathway involved in secondary metabolism and glutamate uptake should be highly conserved in this bacterial phylum. IMPORTANCE In this study, a novel two-component system (TCS), GluR-GluK, was identified to be involved in glutamate sensing and uptake as well as antibiotic biosynthesis in Streptomyces coelicolor. A possible GluR-GluK working model was proposed. Upon sensing high glutamate concentrations (such as 75 mM), activated GluR-GluK could regulate both glutamate uptake and antibiotic biosynthesis. However, under a culture condition of MM supplemented with low concentrations of glutamate (such as 10 mM), although GluR-GluK is activated, its activity is sufficient only for the regulation of antibiotic biosynthesis. To the best of our knowledge, this is the first report describing a TCS signal transduction pathway for glutamate sensing and uptake in actinobacteria.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ricardo Sánchez de la Nieta ◽  
Sergio Antoraz ◽  
Juan F. Alzate ◽  
Ramón I. Santamaría ◽  
Margarita Díaz

2002 ◽  
Vol 184 (3) ◽  
pp. 794-805 ◽  
Author(s):  
N. Jamie Ryding ◽  
Todd B. Anderson ◽  
Wendy C. Champness

ABSTRACT The Streptomyces coelicolor absA two-component system was initially identified through analysis of mutations in the sensor kinase absA1 that caused inhibition of all four antibiotics synthesized by this strain. Previous genetic analysis had suggested that the phosphorylated form of AbsA2 acted as a negative regulator of antibiotic biosynthesis in S. coelicolor (T. B. Anderson, P. Brian, and W. C. Champness, Mol. Microbiol. 39:553–566, 2001). Genomic sequence data subsequently provided by the Sanger Centre (Cambridge, United Kingdom) revealed that absA was located within the gene cluster for production of one of the four antibiotics, calcium-dependent antibiotic (CDA). In this paper we have identified numerous transcriptional start sites within the CDA cluster and have shown that the original antibiotic-negative mutants used to identify absA exhibit a stronger negative regulation of promoters upstream of the proposed CDA biosynthetic genes than of promoters in the clusters responsible for production of actinorhodin and undecylprodigiosin. The same antibiotic-negative mutants also showed an increase in transcription from a promoter divergent to that of absA, upstream of a putative ABC transporter, in addition to an increase in transcription of absA itself. Interestingly, the negative regulation of the biosynthetic transcripts did not appear to be mediated by transcriptional regulation of cdaR (a gene encoding a homolog of the pathway-specific regulators of the act and red clusters) or by any other recognizable transcriptional regulator associated with the cluster. The role of absA in regulating the expression of the diverse antibiotic biosynthesis clusters in the genome is discussed in light of its location in the cda cluster.


2019 ◽  
Vol 10 ◽  
Author(s):  
Erick Eligio Arroyo-Pérez ◽  
Gabriela González-Cerón ◽  
Gloria Soberón-Chávez ◽  
Dimitris Georgellis ◽  
Luis Servín-González

Author(s):  
Sota Honma ◽  
Shinsaku Ito ◽  
Shunsuke Yajima ◽  
Yasuyuki Sasaki

Nitric oxide (NO) is an important signaling molecule in eukaryotic and prokaryotic cells. A previous study revealed an NOS-independent NO production metabolic cycle in which the three nitrogen oxides, nitrate (NO3-), nitrite (NO2-) and NO were generated in the actinobacterium Streptomyces coelicolor A3(2). NO was suggested to act as a signaling molecule, functioning as a hormone that regulates secondary metabolism. Here, we demonstrate the NO-mediated regulation of the production of the blue pigmented antibiotic, actinorhodin (ACT), via the heme-based DevS/R two-component system (TCS). Intracellular NO controls the stabilization or inactivation of DevS, depending on the NO concentration. An electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed the direct binding between DevR and the promoter region of actII-ORF4, resulting in gene expression. Our results indicate that NO simultaneously regulates the DevS/R TCS, thereby strictly controlling the secondary metabolism of S. coelicolor A3(2). Importance Diverse organisms, such as mammals, plants, and bacteria, utilize NO via well known signal transduction mechanisms. Many useful secondary metabolites producer Streptomyces genus bacteria had been also suggested the metabolisms regulated by endogenously produced NO; however, the regulatory mechanisms remain to be elucidated. In this study, we demonstrated the molecular mechanism by which endogenously produced NO regulates antibiotic production via DevS/R TCS in S. coelicolor A3 (2). NO serves as both a stabilizer and a repressor in the regulation of antibiotic production. This report shows the mechanism by which Streptomyces utilizes endogenously produced NO to modulate their normal life cycle. Moreover, this study implies that studying NO signaling in actinobacteria can help in the development of both clinical strategies against pathogenic actinomycetes and the actinobacterial industries.


Sign in / Sign up

Export Citation Format

Share Document