scholarly journals Observing the loss and revival of long-range phase coherence through disorder quenches

2022 ◽  
Vol 119 (1) ◽  
pp. e2111078118
Author(s):  
Benjamin Nagler ◽  
Sian Barbosa ◽  
Jennifer Koch ◽  
Giuliano Orso ◽  
Artur Widera

Relaxation of quantum systems is a central problem in nonequilibrium physics. In contrast to classical systems, the underlying quantum dynamics results not only from atomic interactions but also from the long-range coherence of the many-body wave function. Experimentally, nonequilibrium states of quantum fluids are usually created using moving objects or laser potentials, directly perturbing and detecting the system’s density. However, the fate of long-range phase coherence for hydrodynamic motion of disordered quantum systems is less explored, especially in three dimensions. Here, we unravel how the density and phase coherence of a Bose–Einstein condensate of 6Li2 molecules respond upon quenching on or off an optical speckle potential. We find that, as the disorder is switched on, long-range phase coherence breaks down one order of magnitude faster than the density of the quantum gas responds. After removing it, the system needs two orders of magnitude longer times to reestablish quantum coherence, compared to the density response. We compare our results with numerical simulations of the Gross–Pitaevskii equation on large three-dimensional grids, finding an overall good agreement. Our results shed light on the importance of long-range coherence and possibly long-lived phase excitations for the relaxation of nonequilibrium quantum many-body systems.

Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1243-1269 ◽  
Author(s):  
Chenglong You ◽  
Apurv Chaitanya Nellikka ◽  
Israel De Leon ◽  
Omar S. Magaña-Loaiza

AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.


Author(s):  
G. Mossi ◽  
A. Scardicchio

By considering the quantum dynamics of a transverse-field Ising spin glass on the Bethe lattice, we find the existence of a many-body localized (MBL) region at small transverse field and low temperature. The region is located within the thermodynamic spin glass phase. Accordingly, we conjecture that quantum dynamics inside the glassy region is split into a small MBL region and a large delocalized (but not necessarily ergodic) region. This has implications for the analysis of the performance of quantum adiabatic algorithms. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


Author(s):  
Pedro Ponte ◽  
C. R. Laumann ◽  
David A. Huse ◽  
A. Chandran

Many-body localized (MBL) systems lie outside the framework of statistical mechanics, as they fail to equilibrate under their own quantum dynamics. Even basic features of MBL systems, such as their stability to thermal inclusions and the nature of the dynamical transition to thermalizing behaviour, remain poorly understood. We study a simple central spin model to address these questions: a two-level system interacting with strength J with N ≫1 localized bits subject to random fields. On increasing J , the system transitions from an MBL to a delocalized phase on the vanishing scale J c ( N )∼1/ N , up to logarithmic corrections. In the transition region, the single-site eigenstate entanglement entropies exhibit bimodal distributions, so that localized bits are either ‘on’ (strongly entangled) or ‘off’ (weakly entangled) in eigenstates. The clusters of ‘on’ bits vary significantly between eigenstates of the same sample, which provides evidence for a heterogeneous discontinuous transition out of the localized phase in single-site observables. We obtain these results by perturbative mapping to bond percolation on the hypercube at small J and by numerical exact diagonalization of the full many-body system. Our results support the arguments that the MBL phase is unstable in systems with short-range interactions and quenched randomness in dimensions d that are high but finite. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


1965 ◽  
Vol 43 (4) ◽  
pp. 605-618 ◽  
Author(s):  
M. Razavy ◽  
S. J. Stack

A method of calculation of the nuclear reaction matrix is proposed in which the interaction is divided into two parts. The long-range part of the interaction together with the kinetic energy forms the unperturbed Hamiltonian and the short-range interaction is treated as a perturbation. The separation distance is so chosen that the perturbation produces no energy shift, but modifies the many-body wave function. For the special case where the outer part of the interaction is sufficiently weak, a plane-wave approximation is used for the unperturbed wave function, with the result that the diagonal elements of the reaction matrix are given by the first Born approximation of the long-range part of the potential. An iteration scheme is set up to compute the dividing point of the interaction. Such properties of nuclear matter as saturation, binding energy, and rearrangement energy are discussed in terms of the separation distance and its derivatives. Finally, this method is compared with those of Moszkowski and Scott (1960) and Bethe et al. (1963).


2015 ◽  
Vol 22 (02) ◽  
pp. 1550008
Author(s):  
A. Werpachowska

We present the reduced operator approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system–bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system–bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 565 ◽  
Author(s):  
Vyacheslav I. Yukalov

The review is devoted to two important quantities characterizing many-body systems, order indices and the measure of entanglement production. Order indices describe the type of order distinguishing statistical systems. Contrary to the order parameters characterizing systems in the thermodynamic limit and describing long-range order, the order indices are applicable to finite systems and classify all types of orders, including long-range, mid-range, and short-range orders. The measure of entanglement production quantifies the amount of entanglement produced in a many-partite system by a quantum operation. Despite that the notions of order indices and entanglement production seem to be quite different, there is an intimate relation between them, which is emphasized in the review.


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Markus Schmitt ◽  
Markus Heyl

The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.


Author(s):  
J. Jeknić-Dugić ◽  
M. Arsenijević ◽  
M. Dugić

There is a solution to the problem of asymptotic completeness in many-body scattering theory that offers a specific view of the quantum unitary dynamics which allows for the straightforward introduction of local time for every, at least approximately closed, many-particle system. In this approach, time appears as a hidden classical parameter of the unitary dynamics of a many-particle system. We show that a closed many-particle system can exhibit behaviour that is characteristic for open quantum systems and there is no need for the ‘state collapse’ or environmental influence. On the other hand, closed few-particle systems bear high quantum coherence. This local-time scheme encompasses concepts including ‘emergent time’, ‘relational time’ as well as the ‘hybrid system’ models with possibly induced gravitational uncertainty of time.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document