scholarly journals Thermal inclusions: how one spin can destroy a many-body localized phase

Author(s):  
Pedro Ponte ◽  
C. R. Laumann ◽  
David A. Huse ◽  
A. Chandran

Many-body localized (MBL) systems lie outside the framework of statistical mechanics, as they fail to equilibrate under their own quantum dynamics. Even basic features of MBL systems, such as their stability to thermal inclusions and the nature of the dynamical transition to thermalizing behaviour, remain poorly understood. We study a simple central spin model to address these questions: a two-level system interacting with strength J with N ≫1 localized bits subject to random fields. On increasing J , the system transitions from an MBL to a delocalized phase on the vanishing scale J c ( N )∼1/ N , up to logarithmic corrections. In the transition region, the single-site eigenstate entanglement entropies exhibit bimodal distributions, so that localized bits are either ‘on’ (strongly entangled) or ‘off’ (weakly entangled) in eigenstates. The clusters of ‘on’ bits vary significantly between eigenstates of the same sample, which provides evidence for a heterogeneous discontinuous transition out of the localized phase in single-site observables. We obtain these results by perturbative mapping to bond percolation on the hypercube at small J and by numerical exact diagonalization of the full many-body system. Our results support the arguments that the MBL phase is unstable in systems with short-range interactions and quenched randomness in dimensions d that are high but finite. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.

Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1243-1269 ◽  
Author(s):  
Chenglong You ◽  
Apurv Chaitanya Nellikka ◽  
Israel De Leon ◽  
Omar S. Magaña-Loaiza

AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.


Author(s):  
G. Mossi ◽  
A. Scardicchio

By considering the quantum dynamics of a transverse-field Ising spin glass on the Bethe lattice, we find the existence of a many-body localized (MBL) region at small transverse field and low temperature. The region is located within the thermodynamic spin glass phase. Accordingly, we conjecture that quantum dynamics inside the glassy region is split into a small MBL region and a large delocalized (but not necessarily ergodic) region. This has implications for the analysis of the performance of quantum adiabatic algorithms. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.


2022 ◽  
Vol 119 (1) ◽  
pp. e2111078118
Author(s):  
Benjamin Nagler ◽  
Sian Barbosa ◽  
Jennifer Koch ◽  
Giuliano Orso ◽  
Artur Widera

Relaxation of quantum systems is a central problem in nonequilibrium physics. In contrast to classical systems, the underlying quantum dynamics results not only from atomic interactions but also from the long-range coherence of the many-body wave function. Experimentally, nonequilibrium states of quantum fluids are usually created using moving objects or laser potentials, directly perturbing and detecting the system’s density. However, the fate of long-range phase coherence for hydrodynamic motion of disordered quantum systems is less explored, especially in three dimensions. Here, we unravel how the density and phase coherence of a Bose–Einstein condensate of 6Li2 molecules respond upon quenching on or off an optical speckle potential. We find that, as the disorder is switched on, long-range phase coherence breaks down one order of magnitude faster than the density of the quantum gas responds. After removing it, the system needs two orders of magnitude longer times to reestablish quantum coherence, compared to the density response. We compare our results with numerical simulations of the Gross–Pitaevskii equation on large three-dimensional grids, finding an overall good agreement. Our results shed light on the importance of long-range coherence and possibly long-lived phase excitations for the relaxation of nonequilibrium quantum many-body systems.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
I. Vakulchyk ◽  
I. Yusipov ◽  
M. Ivanchenko ◽  
S. Flach ◽  
S. Denisov

Science ◽  
2018 ◽  
Vol 363 (6425) ◽  
pp. 379-382 ◽  
Author(s):  
Peter T. Brown ◽  
Debayan Mitra ◽  
Elmer Guardado-Sanchez ◽  
Reza Nourafkan ◽  
Alexis Reymbaut ◽  
...  

Strong interactions in many-body quantum systems complicate the interpretation of charge transport in such materials. To shed light on this problem, we study transport in a clean quantum system: ultracold lithium-6 in a two-dimensional optical lattice, a testing ground for strong interaction physics in the Fermi-Hubbard model. We determine the diffusion constant by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity by using the Nernst-Einstein relation. That resistivity exhibits a linear temperature dependence and shows no evidence of saturation, two characteristic signatures of a bad metal. The techniques we developed in this study may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Danying Yu ◽  
Bo Peng ◽  
Xianfeng Chen ◽  
Xiong-Jun Liu ◽  
Luqi Yuan

AbstractThe notion of topological phases extended to dynamical systems stimulates extensive studies, of which the characterization of nonequilibrium topological invariants is a central issue and usually necessitates the information of quantum dynamics in both the time and momentum dimensions. Here, we propose the topological holographic quench dynamics in synthetic dimension, and also show it provides a highly efficient scheme to characterize photonic topological phases. A pseudospin model is constructed with ring resonators in a synthetic lattice formed by frequencies of light, and the quench dynamics is induced by initializing a trivial state, which evolves under a topological Hamiltonian. Our key prediction is that the complete topological information of the Hamiltonian is encoded in quench dynamics solely in the time dimension, and is further mapped to lower-dimensional space, manifesting the holographic features of the dynamics. In particular, two fundamental time scales emerge in the dynamical evolution, with one mimicking the topological band on the momentum dimension and the other characterizing the residue time evolution of the state after the quench. For this, a universal duality between the quench dynamics and the equilibrium topological phase of the spin model is obtained in the time dimension by extracting information from the field evolution dynamics in modulated ring systems in simulations. This work also shows that the photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological nonequilibrium dynamics.


Sign in / Sign up

Export Citation Format

Share Document