control of quantum systems
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Thomas Konrad ◽  
Amy Rouillard ◽  
Michael Kastner ◽  
Hermann Uys

2021 ◽  
Author(s):  
Wenjie Liu ◽  
Bosi Wang ◽  
Jihao Fan ◽  
Yebo Ge ◽  
Mohammed Zidan

Abstract The design of quantum system control is a key task to a powerful quantum information technology. In practical, traditional quantum system control methods often face different constraints, and are easy to cause both leakage and stochastic control errors under the condition of limited resources. Reinforcement learning has been proved as an efficient way to complete the quantum system control task. So a quantum system control method based on enhanced reinforcement learning (QSC-ERL) is proposed. A satisfactory control strategy is obtained through enhanced reinforcement learning so that the quantum system can be evolved accurately from the initial state to the target state. According to the number of candidate unitary operations, the three-switch control is used for simulation experiments. Compared with other methods, the QSC-ERL can achieve high fidelity learning control of quantum systems and improve the efficiency of quantum system control.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 897
Author(s):  
Michele Delvecchio ◽  
Francesco Petiziol ◽  
Sandro Wimberger

We study the robustness of different sweep protocols for accelerated adiabaticity following in the presence of static errors and of dissipative and dephasing phenomena. While in the noise-free case, counterdiabatic driving is, by definition, insensitive to the form of the original sweep function, this property may be lost when the quantum system is open. We indeed observe that, according to the decay and dephasing channels investigated here, the performance of the system becomes highly dependent on the sweep function. Our findings are relevant for the experimental implementation of robust shortcuts-to-adiabaticity techniques for the control of quantum systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Singha ◽  
P. Willke ◽  
T. Bilgeri ◽  
X. Zhang ◽  
H. Brune ◽  
...  

AbstractAtomic scale engineering of magnetic fields is a key ingredient for miniaturizing quantum devices and precision control of quantum systems. This requires a unique combination of magnetic stability and spin-manipulation capabilities. Surface-supported single atom magnets offer such possibilities, where long temporal and thermal stability of the magnetic states can be achieved by maximizing the magnet/ic anisotropy energy (MAE) and by minimizing quantum tunnelling of the magnetization. Here, we show that dysprosium (Dy) atoms on magnesium oxide (MgO) have a giant MAE of 250 meV, currently the highest among all surface spins. Using a variety of scanning tunnelling microscopy (STM) techniques including single atom electron spin resonance (ESR), we confirm no spontaneous spin-switching in Dy over days at ≈ 1 K under low and even vanishing magnetic field. We utilize these robust Dy single atom magnets to engineer magnetic nanostructures, demonstrating unique control of magnetic fields with atomic scale tunability.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 529
Author(s):  
Nikolay L. Popov ◽  
Alexander V. Vinogradov

Current approach to space-time coupling (STC) phenomena is given together with a complementary version of the STC concept that emphasizes the finiteness of the energy of the considered pulses. Manifestations of STC are discussed in the framework of the simplest exact localized solution of Maxwell’s equations, exhibiting a “collapsing shell”. It falls onto the center, continuously deforming, and then, having reached maximum compression, expands back without losing energy. Analytical solutions describing this process enable to fully characterize the field in space-time. It allowed to express energy density in the center of collapse in the terms of total pulse energy, frequency and spectral width in the far zone. The change of the pulse shape while travelling from one point to another is important for coherent control of quantum systems. We considered the excitation of a two-level system located in the center of the collapsing EM (electromagnetic) pulse. The result is again expressed through the parameters of the incident pulse. This study showed that as it propagates, a unipolar pulse can turn into a bipolar one, and in the case of measuring the excitation efficiency, we can judge which of these two pulses we are dealing with. The obtained results have no limitation on the number of cycles in a pulse. Our work confirms the productivity of using exact solutions of EM wave equations for describing the phenomena associated with STC effects. This is facilitated by rapid progress in the search for new types of such solutions.


2021 ◽  
Author(s):  
Aparajita Singha ◽  
Philip Willke ◽  
Tobias Bilgeri ◽  
Xue Zhang ◽  
Harald Brune ◽  
...  

Abstract Atomic scale engineering of magnetic fields is a key ingredient for miniaturizing quantum devices and precision control of quantum systems. This requires a unique combination of magnetic stability and spin-manipulation capabilities. Surface-supported single atom magnets offer such possibilities, where long temporal and thermal stability of the magnetic states can be achieved by maximizing the magnetic anisotropy energy (MAE) and by minimizing quantum tunnelling of the magnetization. Here, we show that dysprosium (Dy) atoms on magnesium oxide (MgO) have a giant MAE of 250 meV, currently the highest among all surface spins. Using a variety of scanning tunnelling microscopy (STM) techniques including single atom electron spin resonance (ESR), we confirm no spontaneous spin-switching in Dy over days at ~1 K under low and even vanishing magnetic field. We utilize these robust Dy single atom magnets to engineer magnetic nanostructures, demonstrating unique control of magnetic fields with atomic scale tunability.


Author(s):  
M.R. James

This article explains some fundamental ideas concerning the optimal control of quantum systems through the study of a relatively simple two-level system coupled to optical fields. The model for this system includes both continuous and impulsive dynamics. Topics covered include open- and closed-loop control, impulsive control, open-loop optimal control, quantum filtering, and measurement feedback optimal control. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 7 (5) ◽  
pp. eabc3991
Author(s):  
Lars Bocklage ◽  
Jakob Gollwitzer ◽  
Cornelius Strohm ◽  
Christian F. Adolff ◽  
Kai Schlage ◽  
...  

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-particles enable accurate control of quantum systems embedded in condensed matter environments.


Sign in / Sign up

Export Citation Format

Share Document