scholarly journals The Completeness of the Irreducible Unitary Representations of a Locally Compact Group

1948 ◽  
Vol 34 (2) ◽  
pp. 52-54 ◽  
Author(s):  
F. I. Mautner
Author(s):  
Sheldon Rothman ◽  
Helen Strassberg

AbstractFor a locally compact group G, the von Neumann kernel, n(G), is the intersection of the kernels of the finite dimensional (continuous) unitary representations of G. In this paper we calculate n(G) explicitly for a general connected locally compact group and for certain classes of non-connected groups.


1962 ◽  
Vol 14 ◽  
pp. 237-268 ◽  
Author(s):  
J. M. G. Fell

Let G be a locally compact group and G† its dual space, that is, the set of all unitary equivalence classes of irreducible unitary representations of G. An important tool for investigating the group algebra of G is the so-called hull-kernel topology of G†, which is discussed in (3) as a special case of the relation of weak containment. The question arises: Given a group G, how do we determine G† and its topology? For many groups G, Mackey's theory of induced representations permits us to catalogue all the elements of G†. One suspects that by suitably supplementing this theory it should be possible to obtain the topology of G† at the same time. It is the purpose of this paper to explore this possibility. Unfortunately, we are not able to complete the programme at present.


2006 ◽  
Vol 98 (2) ◽  
pp. 182 ◽  
Author(s):  
Ross Stokke

Amenable unitary representations of a locally compact group, $G$, are studied in terms of associated coefficient subspaces of the Fourier-Stieltjes algebra $B(G)$, and in terms of the existence of invariant and multiplicative states on associated von Neumann and $C^*$-algebras. We introduce Fourier algebras and reduced Fourier-Stieltjes algebras associated to arbitrary representations, and study amenable representations in relation to these algebras.


2002 ◽  
Vol 133 (2) ◽  
pp. 249-259
Author(s):  
ASTRID AN HUEF ◽  
IAIN RAEBURN

Mackey's imprimitivity theorem characterizes the unitary representations of a locally compact group G which have been induced from representations of a closed subgroup K; Rieffel's influential reformulation says that the group C*-algebra C*(K) is Morita equivalent to the crossed product C0(G/K)×G [14]. There have since been many important generalizations of this theorem, especially by Rieffel [15, 16] and by Green [3, 4]. These are all special cases of the symmetric imprimitivity theorem of [11], which gives a Morita equivalence between two crossed products of induced C*-algebras.


Author(s):  
Eirik Berge

AbstractWe investigate the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })\subset L^{2}(G)$$ W g ( H π ) ⊂ L 2 ( G ) arising from square integrable representations $$\pi :G \rightarrow \mathcal {U}(\mathcal {H}_{\pi })$$ π : G → U ( H π ) of a locally compact group G. We show that the wavelet spaces are rigid in the sense that non-trivial intersection between them imposes strong restrictions. Moreover, we use this to derive consequences for wavelet transforms related to convexity and functions of positive type. Motivated by the reproducing kernel Hilbert space structure of wavelet spaces we examine an interpolation problem. In the setting of time–frequency analysis, this problem turns out to be equivalent to the HRT-conjecture. Finally, we consider the problem of whether all the wavelet spaces $$\mathcal {W}_{g}(\mathcal {H}_{\pi })$$ W g ( H π ) of a locally compact group G collectively exhaust the ambient space $$L^{2}(G)$$ L 2 ( G ) . We show that the answer is affirmative for compact groups, while negative for the reduced Heisenberg group.


2003 ◽  
Vol 10 (3) ◽  
pp. 503-508 ◽  
Author(s):  
Elhoucien Elqorachi ◽  
Mohamed Akkouchi

Abstract We generalize the well-known Baker's superstability result for the d'Alembert functional equation with values in the field of complex numbers to the case of the integral equation where 𝐺 is a locally compact group, μ is a generalized Gelfand measure and σ is a continuous involution of 𝐺.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750067 ◽  
Author(s):  
M. Alaghmandan ◽  
I. G. Todorov ◽  
L. Turowska

We initiate the study of the completely bounded multipliers of the Haagerup tensor product [Formula: see text] of two copies of the Fourier algebra [Formula: see text] of a locally compact group [Formula: see text]. If [Formula: see text] is a closed subset of [Formula: see text] we let [Formula: see text] and show that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] then [Formula: see text] is a set of local spectral synthesis for [Formula: see text]. Conversely, we prove that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] and [Formula: see text] is a Moore group then [Formula: see text] is a set of spectral synthesis for [Formula: see text]. Using the natural identification of the space of all completely bounded weak* continuous [Formula: see text]-bimodule maps with the dual of [Formula: see text], we show that, in the case [Formula: see text] is weakly amenable, such a map leaves the multiplication algebra of [Formula: see text] invariant if and only if its support is contained in the antidiagonal of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document