scholarly journals Amenable representations and coefficient subspaces of Fourier-Stieltjes algebras

2006 ◽  
Vol 98 (2) ◽  
pp. 182 ◽  
Author(s):  
Ross Stokke

Amenable unitary representations of a locally compact group, $G$, are studied in terms of associated coefficient subspaces of the Fourier-Stieltjes algebra $B(G)$, and in terms of the existence of invariant and multiplicative states on associated von Neumann and $C^*$-algebras. We introduce Fourier algebras and reduced Fourier-Stieltjes algebras associated to arbitrary representations, and study amenable representations in relation to these algebras.

Author(s):  
Sheldon Rothman ◽  
Helen Strassberg

AbstractFor a locally compact group G, the von Neumann kernel, n(G), is the intersection of the kernels of the finite dimensional (continuous) unitary representations of G. In this paper we calculate n(G) explicitly for a general connected locally compact group and for certain classes of non-connected groups.


2015 ◽  
Vol 116 (2) ◽  
pp. 250 ◽  
Author(s):  
Yulia Kuznetsova

We present a simple and intuitive framework for duality of locally compacts groups, which is not based on the Haar measure. This is a map, functorial on a non-degenerate subcategory, on the category of coinvolutive Hopf $C^*$-algebras, and a similar map on the category of coinvolutive Hopf-von Neumann algebras. In the $C^*$-version, this functor sends $C_0(G)$ to $C^*(G)$ and vice versa, for every locally compact group $G$. As opposed to preceding approaches, there is an explicit description of commutative and co-commutative algebras in the range of this map (without assumption of being isomorphic to their bidual): these algebras have the form $C_0(G)$ or $C^*(G)$ respectively, where $G$ is a locally compact group. The von Neumann version of the functor puts into duality, in the group case, the enveloping von Neumann algebras of the algebras above: $C_0(G)^{**}$ and $C^*(G)^{**}$.


2007 ◽  
Vol 75 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Astrid an Huef ◽  
S. Kaliszewski ◽  
Iain Raeburn

Suppose that H is a closed subgroup of a locally compact group G. We show that a unitary representation U of H is the restriction of a unitary representation of G if and only if a dual representation Û of a crossed product C*(G) ⋊ (G/H) is regular in an appropriate sense. We then discuss the problem of deciding whether a given representation is regular; we believe that this problem will prove to be an interesting test question in non-Abelian duality for crossed products of C*-algebras.


Author(s):  
Claude Schochet

AbstractThe Kasparov groups are extended to the setting of inverse limits of G-C*-algebras, where G is assumed to be a locally compact group. The K K-product and other important features of the theory are generalized to this setting.


2016 ◽  
Vol 32 (2) ◽  
pp. 195-201
Author(s):  
MARIA JOITA ◽  
◽  
RADU-B. MUNTEANU ◽  

An action (γ, α) of a locally compact group G on a Hilbert pro-C∗-bimodule (X, A) induces an action γ × α of G on A ×X Z the crossed product of A by X. We show that if (γ, α) is an inverse limit action, then the crossed product of A ×α G by X ×γ G respectively of A ×α,r G by X ×γ,r G is isomorphic to the full crossed product of A ×X Z by γ × α respectively the reduced crossed product of A ×X Z by γ × α.


2005 ◽  
Vol 97 (1) ◽  
pp. 89
Author(s):  
Robert J. Archbold ◽  
Eberhard Kaniuth

It is shown that if $G$ is an almost connected nilpotent group then the stable rank of $C^*(G)$ is equal to the rank of the abelian group $G/[G,G]$. For a general nilpotent locally compact group $G$, it is shown that finiteness of the rank of $G/[G,G]$ is necessary and sufficient for the finiteness of the stable rank of $C^*(G)$ and also for the finiteness of the real rank of $C^*(G)$.


1973 ◽  
Vol 74 (3) ◽  
pp. 461-465 ◽  
Author(s):  
J. Moffat

Let ℛ be a von Neumann algebra, with predual ℛ*, acting on a Hilbert space ℋ; G a locally compact group with left Haar measure m, and α a representation of G on aut (ℛ), the group of all *-automorphisms of ℛ, i.e. α is a group homomorphism from G to aut (ℛ). We shall show that if ℋ is separable, then very weak measurability assumptions on the representation α produce strong continuity properties. This will be used to obtain results on the extension of representations from a C*-algebra to its weak closure, giving a much simpler proof of a result of Aarnes ((1), theorem 8, p. 31), and on continuity of tensor products of representations. The main result was suggested by the analogous theory concerning unitary representations of locally compact groups, and its proof employs ideas frequently used in that context. (See, for example, (5), theorem 22.20 (b), p. 347.)


Sign in / Sign up

Export Citation Format

Share Document