scholarly journals A New Approach to Electromagnetic Blood Flow Determination by Means of Catheter in an External Magnetic Field

1970 ◽  
Vol 65 (3) ◽  
pp. 521-527 ◽  
Author(s):  
A. Kolin
1978 ◽  
Vol 19 (2) ◽  
pp. 201-225 ◽  
Author(s):  
M. J. Giles

A new approach to the problem of the radiation emitted from a localized external current source embedded in a magnetoplasma is described. It is argued that the calculation of the fields in the radiation zone can be substantially simplified by adopting at the outset a suitable parametrization of the dispersion surface. We illustrate the approach by calculating the far fields using the full expression for the dielectric tensor of a warm magnetized electron gas. In this case one can take the angle of rotation about the external magnetic field and the square of the refractive index as the curvilinear co-ordinates of the dispersion surface. The form of the surfaces of constant phase and the amplitudes of the emitted waves are described for each topologically different region of parameter space and their structures are related to the shapes of the refractive index surfaces. Attention is also drawn to the existence of locally cylindrical waves that can produce beams which are highly collimated in the direction of the external magnetic field.


2011 ◽  
Vol 04 (02) ◽  
pp. 207-225 ◽  
Author(s):  
J. C. MISRA ◽  
A. SINHA ◽  
G. C. SHIT

In this paper, a mathematical model has been developed for studying blood flow through a porous vessel with a pair of stenoses under the action of an externally applied magnetic field. Blood flowing through the artery is considered to be Newtonian. This model is consistent with the principles of ferro-hydrodynamics and magnetohydrodynamics. Expressions for the velocity profile, volumetric flow rate, wall shear stress and pressure gradient have been derived analytically under the purview of the model. The above said quantities are computed for a specific set of values of the different parameters involved in the model analysis. This serves as an illustration of the validity of the mathematical model developed here. The results estimated on the basis of the computation are presented graphically. The obtained results for different values of the parameters involved in the problem under consideration, show that the flow is appreciably influenced by the presence of magnetic field and the rise in the hematocrit level.


2021 ◽  
Vol 13 (576) ◽  
pp. eabg1762
Author(s):  
Christopher G. Kanakry

Microscopic endovascular probes that navigate by blood flow and an external magnetic field may increase the capabilities of vascular catheterization.


Author(s):  
Nora Aggoune ◽  
Ghazali Mebarki ◽  
Malika Nezar ◽  
Mohammed Salah Aggoune ◽  
Rachid Abdessemed

Sign in / Sign up

Export Citation Format

Share Document