scholarly journals Detection of three protein binding sites in the serum-regulated promoter of the human gene encoding the 70-kDa heat shock protein.

1987 ◽  
Vol 84 (8) ◽  
pp. 2203-2207 ◽  
Author(s):  
B. J. Wu ◽  
G. T. Williams ◽  
R. I. Morimoto
1991 ◽  
Vol 11 (2) ◽  
pp. 1099-1106 ◽  
Author(s):  
F P Lemaigre ◽  
S M Durviaux ◽  
G G Rousseau

The liver-type and muscle-type isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase are encoded by one gene that uses two alternative promoters. We have identified cis-acting sequences and protein-binding sites on the liver-type promoter. Transfection assays with deleted promoters showed that maximal promoter activity is contained within 360 bp upstream of the cap site. DNase I footprinting experiments with liver and spleen nuclear extracts and with purified proteins revealed several protein-binding sites in this region. These included four binding sites for nuclear factor I, one site that contains an octamer consensus but showed a liver-specific footprint pattern, two liver-specific protein-binding sites, and one poly(dG)-containing binding site. Transfection of cells of hepatic origin suggested that all these sites except one are involved in transcriptional regulation. The region between -360 and -2663 contained an element that functioned as a silencer in a nonhepatic cell line. We conclude that in liver transcription from the liver-type promoter of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene is controlled by ubiquitous and tissue-specific factors and involves activating and derepressing mechanisms.


1991 ◽  
Vol 11 (4) ◽  
pp. 1894-1900 ◽  
Author(s):  
C Holdridge ◽  
D Dorsett

The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. We found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. We propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.


1985 ◽  
Vol 5 (2) ◽  
pp. 330-341 ◽  
Author(s):  
B Wu ◽  
C Hunt ◽  
R Morimoto

We have cloned a human gene encoding the 70,000-dalton heat shock protein (HSP70) from a human genomic library, using the Drosophila HSP70 gene as a heterologous hybridization probe. The human recombinant clone hybridized to a 2.6-kilobase polyadenylated mRNA from HeLa cells exposed to 43 degrees C for 2 h. The 2.6-kilobase mRNA was shown to direct the translation in vitro of a 70,000-dalton protein similar in electrophoretic mobility to the HSP70 synthesized in vivo. From the analysis of S1 nuclease-resistant mRNA-DNA hybrids, the HSP70 gene appears to be transcribed as an uninterrupted mRNA of 2.3 kilobases. We show that the cloned HSP70 gene contains the sequences necessary for heat shock-induced expression by two criteria. First, hamster cells transfected with a subclone containing the HSP70 gene and flanking sequences synthesized a HSP70-like protein upon heat shock. Second, human cells transfected with a chimeric gene containing the 5' flanking sequences of the HSP70 gene and the coding sequences of the bacterial chloramphenicol acetyltransferase gene transcribed the chimeric gene upon heat shock. We show that the HSP70 mRNA transcribed in an adenovirus 5 transformed human cell line (293 cells) is identical to the HSP70 mRNA induced by heat shock.


1991 ◽  
Vol 11 (2) ◽  
pp. 1099-1106
Author(s):  
F P Lemaigre ◽  
S M Durviaux ◽  
G G Rousseau

The liver-type and muscle-type isozymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase are encoded by one gene that uses two alternative promoters. We have identified cis-acting sequences and protein-binding sites on the liver-type promoter. Transfection assays with deleted promoters showed that maximal promoter activity is contained within 360 bp upstream of the cap site. DNase I footprinting experiments with liver and spleen nuclear extracts and with purified proteins revealed several protein-binding sites in this region. These included four binding sites for nuclear factor I, one site that contains an octamer consensus but showed a liver-specific footprint pattern, two liver-specific protein-binding sites, and one poly(dG)-containing binding site. Transfection of cells of hepatic origin suggested that all these sites except one are involved in transcriptional regulation. The region between -360 and -2663 contained an element that functioned as a silencer in a nonhepatic cell line. We conclude that in liver transcription from the liver-type promoter of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene is controlled by ubiquitous and tissue-specific factors and involves activating and derepressing mechanisms.


1985 ◽  
Vol 5 (2) ◽  
pp. 330-341
Author(s):  
B Wu ◽  
C Hunt ◽  
R Morimoto

We have cloned a human gene encoding the 70,000-dalton heat shock protein (HSP70) from a human genomic library, using the Drosophila HSP70 gene as a heterologous hybridization probe. The human recombinant clone hybridized to a 2.6-kilobase polyadenylated mRNA from HeLa cells exposed to 43 degrees C for 2 h. The 2.6-kilobase mRNA was shown to direct the translation in vitro of a 70,000-dalton protein similar in electrophoretic mobility to the HSP70 synthesized in vivo. From the analysis of S1 nuclease-resistant mRNA-DNA hybrids, the HSP70 gene appears to be transcribed as an uninterrupted mRNA of 2.3 kilobases. We show that the cloned HSP70 gene contains the sequences necessary for heat shock-induced expression by two criteria. First, hamster cells transfected with a subclone containing the HSP70 gene and flanking sequences synthesized a HSP70-like protein upon heat shock. Second, human cells transfected with a chimeric gene containing the 5' flanking sequences of the HSP70 gene and the coding sequences of the bacterial chloramphenicol acetyltransferase gene transcribed the chimeric gene upon heat shock. We show that the HSP70 mRNA transcribed in an adenovirus 5 transformed human cell line (293 cells) is identical to the HSP70 mRNA induced by heat shock.


1991 ◽  
Vol 11 (4) ◽  
pp. 1894-1900
Author(s):  
C Holdridge ◽  
D Dorsett

The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. We found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. We propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


Sign in / Sign up

Export Citation Format

Share Document