scholarly journals 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells.

1994 ◽  
Vol 91 (16) ◽  
pp. 7415-7419 ◽  
Author(s):  
K. Hara ◽  
K. Yonezawa ◽  
H. Sakaue ◽  
A. Ando ◽  
K. Kotani ◽  
...  
1996 ◽  
Vol 316 (1) ◽  
pp. 161-166 ◽  
Author(s):  
Fiona J. THOMSON ◽  
Colin MOYES ◽  
Pamela H. SCOTT ◽  
Robin PLEVIN ◽  
Gwyn W. GOULD

Lysophosphatidic acid (LPA) stimulated the transport of deoxyglucose into oocytes isolated from Xenopus laevis. This stimulation was accounted for entirely by an increase in the Vmax for transport. Various LPAs with different acyl groups in the sn-1 position and phosphatidic acid stimulated deoxyglucose (deGlc) transport in these cells with a rank order potency of 1-oleoyl-LPA > 1-palmitoyl-LPA > phosphatidic acid = 1-stearoyl-LPA > 1-myristoyl-LPA. The phosphatidylinositol 3´-kinase inhibitor LY294002 completely blocked LPA-stimulated deoxyglucose uptake (IC50 ~2 μM). In marked contrast, wortmannin, which can completely block both insulin-like growth factor-I (IGF-I)-stimulated deGlc uptake in oocytes and phosphatidylinositol 3´-kinase activation at concentrations as low as 20 nM [Gould, Jess, Andrews, Herbst, Plevin and Gibbs (1994) J. Biol. Chem. 269, 26622–26625], was a relatively poor inhibitor of LPA-stimulated deGlc transport, even at concentrations as high as 100 nM. We further show that LPA stimulates phosphatidylinositol 3´-kinase activity(s) that can phosphorylate both phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate, and that this stimulation is inhibited by LY294002 but is relatively insensitive to wortmannin, again in marked contrast to IGF-I-stimulated phosphatidylinositol 3´-kinase activity. Antibodies against the p85 regulatory subunit of phosphatidylinositol 3´-kinase or antiphosphotyrosine antibodies immunoprecipitated IGF-I-stimulated but not LPA-stimulated phosphatidylinositol 3´-kinase activity. We conclude that LPA stimulates glucose uptake in Xenopus oocytes by a mechanism that may involve activation of a form of phosphatidylinositol 3´-kinase that is distinguished from other isoforms by its resistance to wortmannin and by its substrate specificity. Since the LPA-activated form of phosphatidylinositol 3´-kinase is pharmacologically and immunologically distinct from that which is involved in IGF-I-stimulated glucose transport in these cells, we suggest that distinct isoforms of this enzyme are able to function with the same biological effect, at least in the regulation of sugar transport.


2001 ◽  
Vol 21 (7) ◽  
pp. 2423-2434 ◽  
Author(s):  
Antonio Chiloeches ◽  
Clive S. Mason ◽  
Richard Marais

ABSTRACT The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.


1999 ◽  
Vol 103 (2) ◽  
pp. 253-259 ◽  
Author(s):  
Alan Dresner ◽  
Didier Laurent ◽  
Melissa Marcucci ◽  
Margaret E. Griffin ◽  
Sylvie Dufour ◽  
...  

Metabolism ◽  
2003 ◽  
Vol 52 (9) ◽  
pp. 1196-1205 ◽  
Author(s):  
Mohenish K Singh ◽  
Adam D Krisan ◽  
Andrew M Crain ◽  
Dale E Collins ◽  
Ben B Yaspelkis

Diabetes ◽  
1998 ◽  
Vol 47 (2) ◽  
pp. 179-185 ◽  
Author(s):  
R. W. Stevenson ◽  
D. K. Kreutter ◽  
K. M. Andrews ◽  
P. E. Genereux ◽  
E. M. Gibbs

Sign in / Sign up

Export Citation Format

Share Document