scholarly journals Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II

1997 ◽  
Vol 94 (26) ◽  
pp. 14406-14411 ◽  
Author(s):  
S. Kim ◽  
J. Liang ◽  
B. A. Barry
2016 ◽  
Vol 69 (9) ◽  
pp. 991 ◽  
Author(s):  
Keisuke Saito ◽  
Naoki Sakashita ◽  
Hiroshi Ishikita

The proton transfer pathway for redox active tyrosine D (TyrD) in photosystem II is a hydrogen-bond network that involves D2-Arg180 and a series of water molecules. Using quantum mechanical/molecular mechanical calculations, the detailed properties of the energetics and structural geometries were investigated. The potential-energy profile of all hydrogen bonds along the proton transfer pathway indicates that the overall proton transfer from TyrD is energetically downhill. D2-Arg180 plays a key role in the proton transfer pathway, providing a driving force for proton transfer, maintaining the hydrogen-bond network structure, stabilising P680•+, and thus deprotonating TyrD-OH to TyrD-O•. A hydrophobic environment near TyrD enhances the electrostatic interactions between TyrD and redox active groups, e.g. P680 and the catalytic Mn4CaO5 cluster: the redox states of those groups are linked with the protonation state of TyrD, i.e. release of the proton from TyrD. Thus, the proton transfer pathway from TyrD may ultimately contribute to the conversion of S0 into S1 in the dark in order to stabilise the Mn4CaO5 cluster when the photocycle is interrupted in S0.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Koji Kato ◽  
Naoyuki Miyazaki ◽  
Tasuku Hamaguchi ◽  
Yoshiki Nakajima ◽  
Fusamichi Akita ◽  
...  

AbstractPhotosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.


2007 ◽  
Vol 111 (43) ◽  
pp. 12599-12604 ◽  
Author(s):  
David L. Jenson ◽  
Amaris Evans ◽  
Bridgette A. Barry

Biochemistry ◽  
2014 ◽  
Vol 53 (36) ◽  
pp. 5721-5723 ◽  
Author(s):  
Johannes Sjöholm ◽  
Fikret Mamedov ◽  
Stenbjörn Styring

Author(s):  
Bruce A. Diner ◽  
Xiao-Song Tang ◽  
Ming Zheng ◽  
G. Charles Dismukes ◽  
Dee Ann Force ◽  
...  

2019 ◽  
Vol 116 (33) ◽  
pp. 16631-16640 ◽  
Author(s):  
José G. García-Cerdán ◽  
Ariel L. Furst ◽  
Kent L. McDonald ◽  
Danja Schünemann ◽  
Matthew B. Francis ◽  
...  

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559. Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document