scholarly journals Structural Basis for Species-specific Differences in the Phosphorylation of Na,K-ATPase by Protein Kinase C

1995 ◽  
Vol 270 (23) ◽  
pp. 14072-14077 ◽  
Author(s):  
Marina S. Feschenko ◽  
Kathleen J. Sweadner
2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Tatyana I. Igumenova ◽  
Sachin Katti ◽  
Binhan Yu ◽  
Taylor R. Cole

1991 ◽  
Vol 276 (1) ◽  
pp. 257-260 ◽  
Author(s):  
C Pears ◽  
D Schaap ◽  
P J Parker

Protein kinase C (PKC) consists of a family of closely related enzymes that can be divided into two subfamilies (alpha, beta and gamma and delta, epsilon and zeta) on the basis of primary sequence. Functional differences have also been described; thus PKC-alpha, PKC-beta and PKC-gamma readily phosphorylate histone IIIS in vitro, whereas PKC-epsilon will not employ this substrate efficiently. We have previously demonstrated, however, that proteolytic cleavage of PKC-epsilon generates a constitutive kinase activity that is an efficient histone IIIS kinase [Schaap, Hsuan, Totty & Parker (1990) Eur. J. Biochem. 191, 431-435]. In order to investigate the structural basis for this switch in specificity, we have constructed a chimaeric protein containing the regulatory domain of PKC-epsilon fused to the catalytic domain of PKC-gamma. When this is expressed in COS1 cells the chimaeric kinase shows a substrate-specificity similar to that of PKC-epsilon rather than to that of PKC-gamma. This demonstrates a role for the regulatory domain in substrate selection of PKC-epsilon.


1989 ◽  
Vol 86 (24) ◽  
pp. 9672-9676 ◽  
Author(s):  
H. Nakamura ◽  
Y. Kishi ◽  
M. A. Pajares ◽  
R. R. Rando

2002 ◽  
Vol 156 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Angelika Hausser ◽  
Gisela Link ◽  
Linda Bamberg ◽  
Annett Burzlaff ◽  
Sylke Lutz ◽  
...  

We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC)μ involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKCμ–green fluorescent protein fusion proteins costained with the Golgi compartment–specific markers p24 and p230. Deletions of either the NH2-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKCμ completely abrogated Golgi localization of PKCμ. As an NH2-terminal PKCμ fragment was colocalized with p24, this region of PKCμ is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKCμ to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKCμ found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKCμ, in which Golgi compartment recruitment precedes and is essential for activation loop phoshorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH2-terminal serine(s) in the regulatory domain. PKCμ activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKCμ function at the Golgi compartment.


1995 ◽  
Vol 121 (S1) ◽  
pp. A14-A14
Author(s):  
Geotz Krauter ◽  
Claus Wilhelm ◽  
Lieth Erich Hecker

2008 ◽  
Vol 88 (4) ◽  
pp. 1341-1378 ◽  
Author(s):  
Susan F. Steinberg

Protein kinase C (PKC) isoforms comprise a family of lipid-activated enzymes that have been implicated in a wide range of cellular functions. PKCs are modular enzymes comprised of a regulatory domain (that contains the membrane-targeting motifs that respond to lipid cofactors, and in the case of some PKCs calcium) and a relatively conserved catalytic domain that binds ATP and substrates. These enzymes are coexpressed and respond to similar stimulatory agonists in many cell types. However, there is growing evidence that individual PKC isoforms subserve unique (and in some cases opposing) functions in cells, at least in part as a result of isoform-specific subcellular compartmentalization patterns, protein-protein interactions, and posttranslational modifications that influence catalytic function. This review focuses on the structural basis for differences in lipid cofactor responsiveness for individual PKC isoforms, the regulatory phosphorylations that control the normal maturation, activation, signaling function, and downregulation of these enzymes, and the intra-/intermolecular interactions that control PKC isoform activation and subcellular targeting in cells. A detailed understanding of the unique molecular features that underlie isoform-specific posttranslational modification patterns, protein-protein interactions, and subcellular targeting (i.e., that impart functional specificity) should provide the basis for the design of novel PKC isoform-specific activator or inhibitor compounds that can achieve therapeutically useful changes in PKC signaling in cells.


Sign in / Sign up

Export Citation Format

Share Document