scholarly journals Insulin Stimulation of Mitogen-activated Protein Kinase, p90 , and p70 S6 Kinase in Skeletal Muscle of Normal and Insulin-resistant Mice

1995 ◽  
Vol 270 (50) ◽  
pp. 29928-29935 ◽  
Author(s):  
Pi-Yun Chang ◽  
Yannick Le Marchand-Brustel ◽  
Lynn A. Cheatham ◽  
David E. Moller
1994 ◽  
Vol 14 (7) ◽  
pp. 4902-4911
Author(s):  
B Cheatham ◽  
C J Vlahos ◽  
L Cheatham ◽  
L Wang ◽  
J Blenis ◽  
...  

Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.


1994 ◽  
Vol 14 (7) ◽  
pp. 4902-4911 ◽  
Author(s):  
B Cheatham ◽  
C J Vlahos ◽  
L Cheatham ◽  
L Wang ◽  
J Blenis ◽  
...  

Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.


2000 ◽  
Vol 20 (17) ◽  
pp. 6323-6333 ◽  
Author(s):  
Pietro Formisano ◽  
Francesco Oriente ◽  
Francesca Fiory ◽  
Matilde Caruso ◽  
Claudia Miele ◽  
...  

ABSTRACT In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Cα (PKCα) and β activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCα and -β activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCβ with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCβ block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCβ. Finally, blocking PKCα expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCα and -β. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCβ plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.


2002 ◽  
Vol 69 (1) ◽  
pp. 116-125 ◽  
Author(s):  
James R. Van Brocklyn ◽  
J. R. Vandenheede ◽  
Richard Fertel ◽  
Allan J. Yates ◽  
Arfaan A. Rampersaud

Sign in / Sign up

Export Citation Format

Share Document