scholarly journals Kinetic Resolution of the Incorporation of the D1 Protein into Photosystem II and Localization of Assembly Intermediates in Thylakoid Membranes of Spinach Chloroplasts

1996 ◽  
Vol 271 (16) ◽  
pp. 9627-9636 ◽  
Author(s):  
Klaas J. van Wijk ◽  
Bertil Andersson ◽  
Eva-Mari Aro
Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1501
Author(s):  
Beatrice Battaglino ◽  
Alessandro Grinzato ◽  
Cristina Pagliano

Photosystem II (PSII) is a multi-subunit enzymatic complex embedded in the thylakoid membranes responsible for the primary photosynthetic reactions vital for plants. Many herbicides used for weed control inhibit PSII by interfering with the photosynthetic electron transport at the level of the D1 protein, through competition with the native plastoquinone for the QB site. Molecular details of the interaction of these herbicides in the D1 QB site remain to be elucidated in plants. Here, we investigated the inhibitory effect on plant PSII of the PSII-inhibiting herbicides diuron, metobromuron, bentazon, terbuthylazine and metribuzin. We combined analysis of OJIP chlorophyll fluorescence kinetics and PSII activity assays performed on thylakoid membranes isolated from pea plants with molecular docking using the high-resolution PSII structure recently solved from the same plant. Both approaches showed for terbuthylazine, metribuzin and diuron the highest affinity for the D1 QB site, with the latter two molecules forming hydrogen bonds with His215. Conversely, they revealed for bentazon the lowest PSII inhibitory effect accompanied by a general lack of specificity for the QB site and for metobromuron an intermediate behavior. These results represent valuable information for future design of more selective herbicides with enhanced QB binding affinities to be effective in reduced amounts.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


Author(s):  
Faiza Bashir ◽  
Ateeq Ur Rehman ◽  
Milán Szabó ◽  
Imre Vass

AbstractSinglet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular oxygen. In cells of photosynthetic organisms 1O2 is formed primarily in chlorophyll containing complexes, and damages pigments, lipids, proteins and other cellular constituents in their environment. A useful approach to study the physiological role of 1O2 is the utilization of external photosensitizers. In the present study, we employed a multiwell plate-based screening method in combination with chlorophyll fluorescence imaging to characterize the effect of externally produced 1O2 on the photosynthetic activity of isolated thylakoid membranes and intact Chlorella sorokiniana cells. The results show that the external 1O2 produced by the photosensitization reactions of Rose Bengal damages Photosystem II both in isolated thylakoid membranes and in intact cells in a concentration dependent manner indicating that 1O2 plays a significant role in photodamage of Photosystem II.


Sign in / Sign up

Export Citation Format

Share Document