repair cycle
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 9 (2) ◽  
pp. 99-109
Author(s):  
James Enos ◽  
Abigail Burris ◽  
Liam Caulfield ◽  
Robert DeYoung ◽  
Sebastian Houng ◽  
...  

The Army's Lean Six Sigma methodology includes five phases: Define, Measure, Analyze, Improve, and Control (DMAIC); each of these phases includes interaction between the stakeholder and process team. This paper focuses on the application of Lean Six Sigma methodology at Tobyhanna Army Depot to help reduce overruns and repair cycle time within the sheet metal cost center. At the initiation of the project, the process incurred over 4,000 hours of overruns, a situation in which it takes longer to repair an asset than the standard hours allocated for the repair. Additionally, the average repair cycle time, amount of time required to repair an individual asset, exceeded customer expectations by almost four days. The paper describes recommended solutions to address both problems.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2803
Author(s):  
Yuval Tadmor ◽  
Amir Raz ◽  
Shira Reikin-Barak ◽  
Vivek Ambastha ◽  
Eli Shemesh ◽  
...  

Chemical thinning of apple fruitlets is an important practice as it reduces the natural fruit load and, therefore, increases the size of the final fruit for commercial markets. In apples, one chemical thinner used is Metamitron, which is sold as the commercial product Brevis® (Adama, Israel). This thinner inhibits the electron transfer between Photosystem II and Quinone-a within light reactions of photosynthesis. In this study, we investigated the responses of two apple cultivars—Golden Delicious and Top Red—and photosynthetic light reactions after administration of Brevis®. The analysis revealed that the presence of the inhibitor affects both cultivars’ energetic status. The kinetics of the photoprotective mechanism’s sub-processes are attenuated in both cultivars, but this seems more severe in the Top Red cultivar. State transitions of the antenna and Photosystem II repair cycle are decreased substantially when the Metamitron concentration is above 0.6% in the Top Red cultivar but not in the Golden Delicious cultivar. These attenuations result from a biased absorbed energy distribution between photochemistry and photoprotection pathways in the two cultivars. We suggest that Metamitron inadvertently interacts with photoprotective mechanism-related enzymes in chloroplasts of apple tree leaves. Specifically, we hypothesize that it may interact with the kinases responsible for the induction of state transitions and the Photosystem II repair cycle.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1871
Author(s):  
Xueyun Hu ◽  
Imran Khan ◽  
Qingsong Jiao ◽  
Ahmad Zada ◽  
Ting Jia

Chlorophyllase (Chlase, CLH) is one of the earliest discovered enzymes present in plants and green algae. It was long considered to be the first enzyme involved in chlorophyll (Chl) degradation, while strong evidence showed that it is not involved in Chl breakdown during leaf senescence. On the other hand, it is possible that CLH is involved in Chl breakdown during fruit ripening. Recently, it was discovered that Arabidopsis CLH1 is located in developing chloroplasts but not in mature chloroplasts, and it plays a role in protecting young leaves from long-term photodamage by catalysing Chl turnover in the photosystem II (PSII) repair cycle. However, there remain other important questions related to CLH. In this article, we briefly reviewed the research progress on CLH and listed the main unanswered questions related to CLH for further study.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2247
Author(s):  
María Ángeles Castillejo ◽  
Ángel M. Villegas-Fernández ◽  
Tamara Hernández-Lao ◽  
Diego Rubiales

Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba). Although chemical control of this disease is an option, it has serious economic and environmental drawbacks that make resistant cultivars a more sensible choice. The molecular mechanisms behind the defense against B. fabae are poorly understood. In this work, we studied the leave proteome in two faba bean genotypes that respond differently to B. fabae in order to expand the available knowledge on such mechanisms. For this purpose, we used two-dimensional gel electrophoresis (2DE) in combination with Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF/TOF). Univariate statistical analysis of the gels revealed 194 differential protein spots, 102 of which were identified by mass spectrometry. Most of the spots belonged to proteins in the energy and primary metabolism, degradation, redox or response to stress functional groups. The MS results were validated with assays of protease activity in gels. Overall, they suggest that the two genotypes may respond to B. fabae with a different PSII protein repair cycle mechanism in the chloroplast. The differences in resistance to B. fabae may be the result of a metabolic imbalance in the susceptible genotype and of a more efficient chloroplast detoxification system in the resistant genotype at the early stages of infection.


Plant Science ◽  
2021 ◽  
pp. 111128
Author(s):  
Kai Xu ◽  
Jurong Song ◽  
Yujin Wu ◽  
Chenjian Zhuo ◽  
Jing Wen ◽  
...  
Keyword(s):  

2021 ◽  
pp. 83-96
Author(s):  
A. A. Efremov ◽  
I. L. Kovalev

The article presents a conceptual overview of modern approaches to accounting for depreciation of machine and tractor fleet in agrarian production used in different countries of the world. The emphasis is placed on the agricultural specifics, which determines the use of certain methods and tools for calculating depreciation charges. The mechanism of the influence of the operating conditions of agricultural machinery on the choice of the organization’s depreciation policy, as well as the distinctive principles of management accounting for depreciation at agricultural enterprises, is disclosed, the possibilities of taking into account a number of specific factors in the process of determining depreciation are considered – inflation, uneven operation of equipment, its repair cycle, etc. The problem of scientifically based distribution of the value of long-term assets over time is touched upon.


2021 ◽  
Vol 22 (4) ◽  
pp. 2087
Author(s):  
Kai Xu ◽  
Yujin Wu ◽  
Jurong Song ◽  
Kaining Hu ◽  
Zengxiang Wu ◽  
...  

Photosystem II (PSII) is an important component of the chloroplast. The PSII repair cycle is crucial for the relief of photoinhibition and may be advantageous when improving stress resistance and photosynthetic efficiency. Lethal genes are widely used in the efficiency detection and method improvement of gene editing. In the present study, we identified the naturally occurring lethal mutant 7-521Y with etiolated cotyledons in Brassica napus, controlled by double-recessive genes (named cyd1 and cyd2). By combining whole-genome resequencing and map-based cloning, CYD1 was fine-mapped to a 29 kb genomic region using 15,167 etiolated individuals. Through cosegregation analysis and functional verification of the transgene, BnaC06.FtsH1 was determined to be the target gene; it encodes an filamentation temperature sensitive protein H 1 (FtsH1) hydrolase that degrades damaged PSII D1 in Arabidopsis thaliana. The expression of BnaC06.FtsH1 was high in the cotyledons, leaves, and flowers of B. napus, and localized in the chloroplasts. In addition, the expression of EngA (upstream regulation gene of FtsH) increased and D1 decreased in 7-521Y. Double mutants of FtsH1 and FtsH5 were lethal in A. thaliana. Through phylogenetic analysis, the loss of FtsH5 was identified in Brassica, and the remaining FtsH1 was required for PSII repair cycle. CYD2 may be a homologous gene of FtsH1 on chromosome A07 of B. napus. Our study provides new insights into lethal mutants, the findings may help improve the efficiency of the PSII repair cycle and biomass accumulation in oilseed rape.


Author(s):  
A. A. Vorobyov ◽  
◽  
R. S. Smetanin ◽  

The article deals with the analysis of reliability of the equipment of 2ES10 electric locomotives with asynchronous traction motors as a complex system and equipment failures that are often encountered during operation. All submitted failures are divided by type of equipment. Based on the Pareto analysis, the main limiting units of these electric locomotives with the lowest reliability are determined. Based on the Pareto analysis, the frequently failing elements of the main limiting components are determined, which are the mechanical part, wheel pairs, brake equipment, traction drive and traction motors. These elements have a major impact on the safety of train traffic and therefore it is extremely important to constantly assess the condition of these elements. Attention is focused on the analysis of risks associated with the possible formation of operational failures, the system of planned preventive maintenance, methods and tools for assessing reliability, incorrect regulatory and documentation support and fixing operational defects, and their subsequent processing. Such a study makes it possible to improve the safety of the transportation process by careful monitoring of the most vulnerable areas of the rolling stock. This reveals the prefailure state before it occurs. The results of the study can be used as a basis for adjusting the current structure of the repair cycle in terms of reducing inter-repair runs.


Author(s):  
Yao Wu ◽  
Jia-Peng He ◽  
Juan Xie ◽  
Ke-zhi Wang ◽  
Jin-Wen Kang ◽  
...  

Abstract The endometrium undergoes a pregnancy-delivery-repair cycle multiple times during the reproductive lifespan in females. Decidualization is one of the critical events for the success of this essential process. We have previously reported that Notch1 is essential for artificial decidualization in mice. However, in a natural pregnancy, the deletion of Notch1 (PgrCre/+Notch1f/f, or Notch1d/d) only affects female fertility in the first 30 days of a 6-month fertility test, but not the later stages. In the present study, we undertook a closer evaluation at the first pregnancy of these mice to attempt to understand this puzzling phenomenon. We observed a large number of pregnancy losses in Notch1d/d mice in their first pregnancy, which led to the subfertility observed in the first 30 days of the fertility test. We then demonstrated that the initial pregnancy loss is a consequence of impaired decidualization. Furthermore, we identified a group of genes that contribute to Notch1 regulated decidualization in a natural pregnancy. Gene ontogeny analysis showed that these differentially expressed genes in the natural pregnancy are involved in cell–cell and cell–matrix interactions, different from genes that have been previously identified from the artificial decidualization model, which contribute to cell proliferation and apoptosis. In summary, we determined that Notch1 is essential for normal decidualization in the mouse uterus only in the first pregnancy but not in subsequent ones.


Sign in / Sign up

Export Citation Format

Share Document