photosynthetic electron transport
Recently Published Documents





2022 ◽  
Vol 7 (1) ◽  
pp. 115-121
Katarína Kráľová ◽  
Renata Gašparová ◽  
Martin Moncman

A new series of carboxhydrazides 6-8 was synthesized under microwave irradiation by reaction of carboxhydrazide 1 with heterocyclic aldehydes 2-4 in the presence of p-toluenesulfonic acid in ethanol. N-Benzoylcarboxhydrazide 9 was prepared by reaction of 1 with benzoylchlorid 5 in THF at room temperature. The effects of 6-9 on inhibition of photosynthetic electron transport in spinach chloroplasts and chlorophyll content in the antialgal suspensions of Chlorella vulgaris were investigated.

2022 ◽  
Vol 119 (3) ◽  
pp. e2116623119
Chen Hao ◽  
Yanzhi Yang ◽  
Jianmei Du ◽  
Xing Wang Deng ◽  
Lei Li

Leaf senescence is a critical process in plants and has a direct impact on many important agronomic traits. Despite decades of research on senescence-altered mutants via forward genetics and functional assessment of senescence-associated genes (SAGs) via reverse genetics, the senescence signal and the molecular mechanism that perceives and transduces the signal remain elusive. Here, using dark-induced senescence (DIS) of Arabidopsis leaf as the experimental system, we show that exogenous copper induces the senescence syndrome and transcriptomic changes in light-grown plants parallel to those in DIS. By profiling the transcriptomes and tracking the subcellular copper distribution, we found that reciprocal regulation of plastocyanin, the thylakoid lumen mobile electron carrier in the Z scheme of photosynthetic electron transport, and SAG14 and plantacyanin (PCY), a pair of interacting small blue copper proteins located on the endomembrane, is a common thread in different leaf senescence scenarios, including DIS. Genetic and molecular experiments confirmed that the PCY-SAG14 module is necessary and sufficient for promoting DIS. We also found that the PCY-SAG14 module is repressed by a conserved microRNA, miR408, which in turn is repressed by phytochrome interacting factor 3/4/5 (PIF3/4/5), the key trio of transcription factors promoting DIS. Together, these findings indicate that intracellular copper redistribution mediated by PCY-SAG14 has a regulatory role in DIS. Further deciphering the copper homeostasis mechanism and its interaction with other senescence-regulating pathways should provide insights into our understanding of the fundamental question of how plants age.

2022 ◽  
David Cuitun-Coronado ◽  
Hannah Rees ◽  
Anthony Hall ◽  
Luiza Lane de Barros Dantas ◽  
Antony N Dodd

Circadian rhythms are 24-hour biological cycles that align metabolism, physiology and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to photochemistry in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of several measures of photosynthetic biochemistry (delayed fluorescence, the rate of photosynthetic electron transport, and non-photochemical quenching of chlorophyll fluorescence). Second, we identified that light-dark cycles increase the robustness of the 24 h cycles of photosynthesis in M. polymorpha, which might be due to the masking of underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis might be well-conserved amongst terrestrial plants.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2803
Yuval Tadmor ◽  
Amir Raz ◽  
Shira Reikin-Barak ◽  
Vivek Ambastha ◽  
Eli Shemesh ◽  

Chemical thinning of apple fruitlets is an important practice as it reduces the natural fruit load and, therefore, increases the size of the final fruit for commercial markets. In apples, one chemical thinner used is Metamitron, which is sold as the commercial product Brevis® (Adama, Israel). This thinner inhibits the electron transfer between Photosystem II and Quinone-a within light reactions of photosynthesis. In this study, we investigated the responses of two apple cultivars—Golden Delicious and Top Red—and photosynthetic light reactions after administration of Brevis®. The analysis revealed that the presence of the inhibitor affects both cultivars’ energetic status. The kinetics of the photoprotective mechanism’s sub-processes are attenuated in both cultivars, but this seems more severe in the Top Red cultivar. State transitions of the antenna and Photosystem II repair cycle are decreased substantially when the Metamitron concentration is above 0.6% in the Top Red cultivar but not in the Golden Delicious cultivar. These attenuations result from a biased absorbed energy distribution between photochemistry and photoprotection pathways in the two cultivars. We suggest that Metamitron inadvertently interacts with photoprotective mechanism-related enzymes in chloroplasts of apple tree leaves. Specifically, we hypothesize that it may interact with the kinases responsible for the induction of state transitions and the Photosystem II repair cycle.

2021 ◽  
Joy Collombat ◽  
Thibaut Pralon ◽  
Jenny Pego Magalhaes ◽  
Sarah Rottet ◽  
Brigitte Ksas ◽  

Abstract Multiple chloroplast-to-nucleus signaling pathways contribute to the regulation of chloroplast biogenesis during plant greening. Here, we provide evidence for the direct implication of the atypical kinase ABC1K1. ABC1K1 is required for sufficient plastoquinone (PQ) allocation to the photosynthetic electron transport chain. Unexpectedly, mutation of abc1k1 suppresses greening and results in pale cotyledons under red light. This phenotype was not observed in other photosynthetic mutants and points to a specific signaling defect. Under red light, abc1k1 accumulated EXECUTER1 (EX1), a trigger of singlet oxygen (1O2) signaling. Consistent with the role of the FTSH metalloprotease in chloroplast biogenesis and EX1 degradation, the ftsh2 mutant var2, mimicked the greening defect of abc1k1 and accumulated EX1 under red light. We propose that this novel ABC1K1-dependent signal is required for chloroplast biogenesis to progress in challenging light conditions.

2021 ◽  
Vol 118 (51) ◽  
pp. e2114952118
Yuichi Yokochi ◽  
Yuka Fukushi ◽  
Ken-ichi Wakabayashi ◽  
Keisuke Yoshida ◽  
Toru Hisabori

Thioredoxin (Trx) is a protein that mediates the reducing power transfer from the photosynthetic electron transport system to target enzymes in chloroplasts and regulates their activities. Redox regulation governed by Trx is a system that is central to the adaptation of various chloroplast functions to the ever-changing light environment. However, the factors involved in the opposite reaction (i.e., the oxidation of various enzymes) have yet to be revealed. Recently, it has been suggested that Trx and Trx-like proteins could oxidize Trx-targeted proteins in vitro. To elucidate the in vivo function of these proteins as oxidation factors, we generated mutant plant lines deficient in Trx or Trx-like proteins and studied how the proteins are involved in oxidative regulation in chloroplasts. We found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx (ACHT), seemed to serve as oxidation factors for Trx-targeted proteins, such as fructose-1,6-bisphosphatase, Rubisco activase, and the γ-subunit of ATP synthase. In addition, ACHT was found to be involved in regulating nonphotochemical quenching, which is the mechanism underlying the thermal dissipation of excess light energy. Overall, these results indicate that Trx and Trx-like proteins regulate chloroplast functions in concert by controlling the redox state of various photosynthesis-related proteins in vivo.

xiaowen da ◽  
jiangfan guo ◽  
peng yan ◽  
Chao Yang ◽  
Hongfei Zhao ◽  

Leaf-form ferredoxin-NADP+ oxidoreductases (LFNRs) function in the last step of the photosynthetic electron transport chain, exist as soluble proteins in the chloroplast stroma, and are weakly associated with thylakoids or tightly anchored to chloroplast membranes. Arabidopsis thaliana has two LFNRs, and the chloroplast proteins AtTROL (THYLAKOID RHODANESE-LIKE PROTEIN) and AtTIC62 (62-kDa SUBUNIT OF TRANSLOCON OF INNER CHLOROPLAST MEMBRANE) participate in anchoring AtLFNRs to the thylakoid membrane. By contrast, the membrane anchoring mechanism of rice (Oryza sativa) LFNRs has not been elucidated. Here, we investigated the membrane-anchoring mechanism of LFNRs and its physiological roles in rice. We characterized the rice protein OsTROL1 based on its homology to AtTROL and showed that OsTROL1 is also a thylakoid membrane anchor and its loss led to a compensatory increase in OsTIC62. Moreover, OsLFNR1 attachment through a membrane anchor depends on OsLFNR2, unlike their Arabidopsis counterparts. In addition, OsTIC62 was more highly expressed in rice under dark than under light conditions, consistent with the increased membrane binding of OsLFNR in the dark. Moreover, we observed reciprocal stabilization between OsLFNRs and their membrane anchors. Therefore, our study sheds light on the mechanisms anchoring LFNRs to membranes in rice and highlights differences with Arabidopsis

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256410
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

We employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary photochemistry in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait, where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated that kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based photochemistry estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2537
Pimchanok Buapet ◽  
Sutinee Sinutok

Calcifying macroalgae contribute significantly to the structure and function of tropical marine ecosystems. Their calcification and photosynthetic processes are not well understood despite their critical role in marine carbon cycles and high vulnerability to environmental changes. This study aims to provide a better understanding of the macroalgal calcification process, focusing on its relevance concerning seawater carbonate chemistry and its relationship to photosynthesis in three dominant calcified macroalgae in Thailand, Padina boryana, Halimeda macroloba and Halimeda opuntia. Morphological and microstructural attributes of the three macroalgae were analyzed and subsequently linked to their calcification rates and responses to inhibition of photosynthesis. In the first experiment, seawater pH, total alkalinity and total dissolved inorganic carbon were measured after incubation of the macroalgae in the light and after equilibration of the seawater with air. Estimations of carbon uptake into photosynthesis and calcification and carbon release into air were obtained thereafter. Our results provide evidence that calcification of the three calcified macroalgae is a potential source of CO2, where calcification by H. opuntia and H. macroloba leads to a greater release of CO2 per biomass weight than P. boryana. Nevertheless, this capacity is expected to vary on a diurnal basis, as the second experiment indicates that calcification is highly coupled to photosynthetic activity. Lower pH as a result of inhibited photosynthesis under darkness imposes more negative effects on H. opuntia and H. macroloba than on P. boryana, implying that they are more sensitive to acidification. These effects were worsened when photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, highlighting the significance of photosynthetic electron transport-dependent processes. Our findings suggest that estimations of the amount of carbon stored in the vegetated marine ecosystems should account for macroalgal calcification as a potential carbon source while considering diurnal variations in photosynthesis and seawater pH in a natural setting.

Hongyun Yao ◽  
Xiao-Yan Li ◽  
Cicheng Zhang ◽  
Pei Wang ◽  
Fangzhong Shi ◽  

As regional heterogeneity on the Qinghai Tibetan Plateau (QTP), the “greening rate” between alpine steppe in the west and alpine meadow ecosystems in the east is difference during the past several decades. To investigate the difference, the net photosynthetic rate (An) and the supply (mesophyll conductance ( g), stomatal conductance ( g)) and demand (the maximum rates of Rubisco carboxylase activity ( V) and photosynthetic electron transport ( J)) for CO of three plants functional types (PFTs) were measured. Other functional traits and influencing factors were compared among ecosystems along the altitudinal gradients of QTP. The An of the PFTs was simulated under potential future conditions. At high altitudes, grass was found to maintain a relatively stable An by decreasing V, J, and g, while slightly increasing g, compared with that at a low altitude. The An of sedge and shrubs increased with rising V, J and g and g values, resulting in a large increment in the An at low altitudes. Grass seemed to be less sensitive to the environment by reducing the supply of and holding onto CO , while sedge and shrub increased both. Grass and sedge should be divided into two PFTs rather than remaining as one based on their opposite physiological and morphological functions in response to climate change. The ecosystem at 3600 m was transitional. C was likely to be a more dominant factor than T in affecting the An of grass. The order of rising An in PFTs was shrub > sedge > grass and the An of alpine meadow was found to increase more under the two future climate scenarios.

Sign in / Sign up

Export Citation Format

Share Document