scholarly journals Molecular Cloning of a Novel Thyroid Hormone-responsive Gene,ZAKI-4, in Human Skin Fibroblasts

1996 ◽  
Vol 271 (24) ◽  
pp. 14567-14571 ◽  
Author(s):  
Takashi Miyazaki ◽  
Yasuhiko Kanou ◽  
Yoshiharu Murata ◽  
Sachiko Ohmori ◽  
Toshimitsu Niwa ◽  
...  
1990 ◽  
Vol 123 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Yoshimasa Shishiba ◽  
Yasuhiro Takeuchi ◽  
Noriko Yokoi ◽  
Yasunori Ozawa ◽  
Taeko Shimizu

Abstract We previously demonstrated that proteoglycan accumulated in the affected skin of circumscribed pretibial myxedema of Graves' disease. As an underlying mechanism responsible for the accumulation, we sought to determine whether excess thyroid hormone was partially responsible for the increase in proteoglycan synthesis. Human skin fibroblasts were cultured in Ham's F-10 medium containing 1% Nutridoma with graded doses of T3 (0.184 × 10−9 to 46 × 10−9 mol/l) and were labelled with [35S]sulphate and [3H]glucosamine. Proteoglycans were purified by Sephadex G-50, Q-Sepharose chromatography with NaCl-gradient and Sepharose CL-6B chromatography. 35S and 3H incorporated into dermatan sulphate proteoglycan and heparan sulphate proteoglycan and 3H incorporated into hyaluronan were measured. 35S and 3H incorporation into dermatan sulphate proteoglycan was minimum at a T3 concentration of 0.184 × 10−9 mol/l, and increased with increasing doses of T3 up to 46 × 10−9 mol/l. 35S and 3H incorporation into heparan sulphate proteoglycan also increased with increasingdoses of T3. 3H incorporation into hyaluronan was not influenced at all by T3. The increased incorporation of 35S into proteoglycan in high-T3 culture reflects the increased synthesis of proteoglycan because 1. the extent of sulphation of disaccharides examined by thin-layer chromatography was not altered by T3; 2. the specific activity of [35S]sulphate was not influenced by T3, and 3. T3 did not decrease the degradation rate of cell-associated proteoglycan.


Thyroid ◽  
2009 ◽  
Vol 19 (6) ◽  
pp. 639-644 ◽  
Author(s):  
Lars C. Moeller ◽  
Craig Wardrip ◽  
Marek Niekrasz ◽  
Samuel Refetoff ◽  
Roy E. Weiss

Endocrinology ◽  
1981 ◽  
Vol 108 (6) ◽  
pp. 2397-2399 ◽  
Author(s):  
TERRY J. SMITH ◽  
ALLEN L. HORWITZ* ◽  
SAMUEL REFETOFF

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 117-LB
Author(s):  
LUKE R. LEMMERMAN ◽  
MARIA ANGELICA RINCON-BENAVIDES ◽  
SARAH A. TERSEY ◽  
BRITANI N. BLACKSTONE ◽  
HEATHER M. POWELL ◽  
...  

Author(s):  
Ok Kyung Kim ◽  
Da-Eun Nam ◽  
Min-Jae Lee ◽  
Namgil Kang ◽  
Jae-Youn Lim ◽  
...  

1983 ◽  
Vol 116 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Ronald P.J. Oude Elferink ◽  
Erik Harms ◽  
Anneke Strijland ◽  
Joseph M. Tager

1984 ◽  
Vol 12 (2) ◽  
pp. 89-97
Author(s):  
Graham R. Elliott ◽  
H.E. Amos ◽  
James W. Bridges

The rate of growth of normal human skin fibroblasts was inhibited in a dose related, reversible, fashion by practolol (N-4-(2-hydroxy)-3 (1-methyl)-aminopropoxyphenylacetamine) (ID50 1.35 ± 0.14 x 10-3M), propranolol (1-(isopropylamino)-3(1-naphthyl-oxy)-2-propranolol) (ID50 0.145 ± 0.02 x 10-3M) and paracetamol (N-(4-hydroxyphenyl) acetamide) (ID50 0.85 ± 0.2 x 10-3M). Skin fibroblasts isolated from a psoriasis patient were more sensitive towards practolol (ID50 0.48 ± 0.14 x 10-3M) and propranolol (ID50 0.032 ± 0.002 x 10-3M), but less sensitive towards paracetamol (ID50 1.3 ± 0.07 x 10-3M). In vitro generated metabolites of practolol, using normal or Arochlor 1254-pretreated hamster liver preparations, and structural analogues of practolol had no effect upon the growth of either cell type.


Sign in / Sign up

Export Citation Format

Share Document