scholarly journals Essential Role of Insulin Receptor Substrate-2 in Insulin Stimulation of Glut4 Translocation and Glucose Uptake in Brown Adipocytes

2000 ◽  
Vol 275 (33) ◽  
pp. 25494-25501 ◽  
Author(s):  
Mathias Fasshauer ◽  
Johannes Klein ◽  
Kohjiro Ueki ◽  
Kristina M. Kriauciunas ◽  
Manuel Benito ◽  
...  
1995 ◽  
Vol 15 (9) ◽  
pp. 4711-4717 ◽  
Author(s):  
D Chen ◽  
D J Van Horn ◽  
M F White ◽  
J M Backer

Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.


1997 ◽  
Vol 272 (41) ◽  
pp. 25839-25844 ◽  
Author(s):  
Yasushi Kaburagi ◽  
Shinobu Satoh ◽  
Hiroyuki Tamemoto ◽  
Ritsuko Yamamoto-Honda ◽  
Kazuyuki Tobe ◽  
...  

2006 ◽  
Vol 291 (4) ◽  
pp. E817-E828 ◽  
Author(s):  
Taku Nedachi ◽  
Makoto Kanzaki

It is well established that insulin stimulation of glucose uptake in skeletal muscle cells is mediated through translocation of GLUT4 from intracellular storage sites to the cell surface. However, the established skeletal muscle cell lines, with the exception of L6 myocytes, reportedly show minimal insulin-dependent glucose uptake and GLUT4 translocation. Using C2C12 myocytes expressing exofacial-Myc-GLUT4-enhanced cyan fluorescent protein, we herein show that differentiated C2C12 myotubes are equipped with basic GLUT4 translocation machinery that can be activated by insulin stimulation (∼3-fold increase as assessed by anti-Myc antibody uptake and immunostaining assay). However, this insulin stimulation of GLUT4 translocation was difficult to demonstrate with a conventional 2-deoxyglucose uptake assay because of markedly elevated basal glucose uptake via other glucose transporter(s). Intriguingly, the basal glucose transport activity in C2C12 myotubes appeared to be acutely suppressed within 5 min by preincubation with a pathophysiologically high level of extracellular glucose (25 mM). In contrast, this activity was augmented by acute glucose deprivation via an unidentified mechanism that is independent of GLUT4 translocation but is dependent on phosphatidylinositol 3-kinase activity. Taken together, these findings indicate that regulation of the facilitative glucose transport system in differentiated C2C12 myotubes can be achieved through surprisingly acute glucose-dependent modulation of the activity of glucose transporter(s), which apparently contributes to obscuring the insulin augmentation of glucose uptake elicited by GLUT4 translocation. We herein also describe several methods of monitoring insulin-dependent glucose uptake in C2C12 myotubes and propose this cell line to be a useful model for analyzing GLUT4 translocation in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document