scholarly journals Differential role of insulin receptor autophosphorylation sites 1162 and 1163 in the long-term insulin stimulation of glucose transport, glycogenesis, and protein synthesis.

1992 ◽  
Vol 267 (19) ◽  
pp. 13488-13497
Author(s):  
C Desbois ◽  
J Capeau ◽  
I Hainault ◽  
D Wicek ◽  
C Reynet ◽  
...  
2000 ◽  
Vol 275 (33) ◽  
pp. 25494-25501 ◽  
Author(s):  
Mathias Fasshauer ◽  
Johannes Klein ◽  
Kohjiro Ueki ◽  
Kristina M. Kriauciunas ◽  
Manuel Benito ◽  
...  

1999 ◽  
Vol 19 (7) ◽  
pp. 4684-4694 ◽  
Author(s):  
Dong Chen ◽  
Raymond V. Fucini ◽  
Ann Louise Olson ◽  
Brian A. Hemmings ◽  
Jeffrey E. Pessin

ABSTRACT We have previously reported that insulin and osmotic shock stimulate an increase in glucose transport activity and translocation of the insulin-responsive glucose transporter isoform GLUT4 to the plasma membrane through distinct pathways in 3T3L1 adipocytes (D. Chen, J. S. Elmendorf, A. L. Olson, X. Li, H. S. Earp, and J. E. Pessin, J. Biol. Chem. 272:27401–27410, 1997). In investigations of the relationships between these two signaling pathways, we have now observed that these two stimuli are not additive, and, in fact, osmotic shock pretreatment was found to completely prevent any further insulin stimulation of glucose transport activity and GLUT4 protein translocation. In addition, osmotic shock inhibited the insulin stimulation of lipogenesis and glycogen synthesis. This inhibition of insulin-stimulated downstream signaling occurred without any significant effect on insulin receptor autophosphorylation or tyrosine phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, there was no effect on either the insulin-stimulated association of the p85 type I phosphatidylinositol (PI) 3-kinase regulatory subunit with IRS1 or phosphotyrosine antibody-immunoprecipitated PI 3-kinase activity. In contrast, osmotic shock pretreatment markedly inhibited the insulin stimulation of protein kinase B (PKB) and p70S6 kinase activities. In addition, the dephosphorylation of PKB was prevented by pretreatment with the phosphatase inhibitors okadaic acid and calyculin A. These data support a model in which osmotic shock-induced insulin resistance of downstream biological responses results from an inhibition of insulin-stimulated PKB activation.


1982 ◽  
Vol 202 (1) ◽  
pp. 263-265 ◽  
Author(s):  
Michael L. McCaleb ◽  
David B. Donner

Occupancy increased the affinity of the insulin receptor of the adipocyte. During the affinity change the half-maximal sensitivity of glucose transport to insulin stimulation was unaltered. Decreased maximum response of transport only occurred after the affinity change. There was not a simple relationship between receptor affinity and insulin stimulation of glucose transport in the adipocyte.


1989 ◽  
Vol 111 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Amira Klip ◽  
Andre G. Douen

2000 ◽  
Vol 278 (1) ◽  
pp. E103-E112 ◽  
Author(s):  
Emma Heart ◽  
Woo S. Choi ◽  
Chin K. Sung

To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.


1989 ◽  
Vol 264 (2) ◽  
pp. 389-396 ◽  
Author(s):  
T P Ciaraldi ◽  
A Maisel

The potential role of guanine nucleotide regulatory proteins (G-proteins) in acute insulin regulation of glucose transport was investigated by using bacterial toxins which are known to modify these proteins. Cholera-toxin treatment of isolated rat adipocytes had no effect on either 2-deoxyglucose transport or insulin binding. Pertussis-toxin treatment resulted in an inhibition of both insulin binding and glucose transport. Insulin binding was decreased in pertussis-toxin-treated cells by up to 40%, owing to a lowering of the affinity of the receptor for hormone, with no change in hormone internalization. The dose-response curve for insulin stimulation of glucose transport was strongly shifted to the right by pertussis-toxin treatment [EC50 (half-maximally effective insulin concn.) = 0.31 +/- 0.04 ng/ml in control cells; 2.29 +/- 1.0 in treated cells), whereas cholera toxin had only a small effect (EC50 = 0.47 +/- 0.02 ng/ml). Correcting for the change in hormone binding, pertussis toxin was found to decrease the coupling efficiency of occupied receptors (50% of maximal insulin effect with 928 molecules bound/cell in control and 3418 in treated cells). Pertussis-toxin inhibition of insulin sensitivity was slow in onset, requiring 2-3 h for completion. Under conditions where pertussis-toxin inhibition of insulin sensitivity was maximal, a 41,000 Da protein similar to the alpha subunit of Gi (the inhibitory G-protein) was found to be fully ribosylated. These results are consistent with the concept that pertussis-toxin-sensitive G-protein(s) can modify the insulin-receptor/glucose-transport coupling system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document